Go to the documentation of this file.
99 #define OFFSET(x) offsetof(LoudNormContext, x)
100 #define FLAGS AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
136 double total_weight = 0.0;
137 const double sigma = 3.5;
141 const int offset = 21 / 2;
142 const double c1 = 1.0 / (sigma * sqrt(2.0 *
M_PI));
143 const double c2 = 2.0 * pow(sigma, 2.0);
145 for (
i = 0;
i < 21;
i++) {
147 s->weights[
i] =
c1 *
exp(-(pow(x, 2.0) /
c2));
148 total_weight +=
s->weights[
i];
151 adjust = 1.0 / total_weight;
152 for (
i = 0;
i < 21;
i++)
162 for (
i = 0;
i < 21;
i++)
175 buf =
s->limiter_buf;
176 ceiling =
s->target_tp;
179 if (
index >=
s->limiter_buf_size)
180 index -=
s->limiter_buf_size;
187 for (n = 0; n < nb_samples; n++) {
189 double this, next, max_peak;
194 if ((
s->prev_smp[
c] <=
this) && (next <=
this) && (
this > ceiling) && (n > 0)) {
198 for (
i = 2;
i < 12;
i++) {
218 *peak_value = max_peak;
222 s->prev_smp[
c] =
this;
226 if (
index >=
s->limiter_buf_size)
227 index -=
s->limiter_buf_size;
233 int n,
c,
index, peak_delta, smp_cnt;
234 double ceiling, peak_value;
237 buf =
s->limiter_buf;
238 ceiling =
s->target_tp;
239 index =
s->limiter_buf_index;
246 for (n = 0; n < 1920; n++) {
254 s->gain_reduction[1] = ceiling /
max;
256 buf =
s->limiter_buf;
258 for (n = 0; n < 1920; n++) {
261 env =
s->gain_reduction[1];
268 buf =
s->limiter_buf;
273 switch(
s->limiter_state) {
276 if (peak_delta != -1) {
278 smp_cnt += (peak_delta -
s->attack_length);
279 s->gain_reduction[0] = 1.;
280 s->gain_reduction[1] = ceiling / peak_value;
283 s->env_index =
s->peak_index - (
s->attack_length *
channels);
284 if (
s->env_index < 0)
285 s->env_index +=
s->limiter_buf_size;
288 if (
s->env_index >
s->limiter_buf_size)
289 s->env_index -=
s->limiter_buf_size;
292 smp_cnt = nb_samples;
297 for (;
s->env_cnt <
s->attack_length;
s->env_cnt++) {
300 env =
s->gain_reduction[0] - ((
double)
s->env_cnt / (
s->attack_length - 1) * (
s->gain_reduction[0] -
s->gain_reduction[1]));
301 buf[
s->env_index +
c] *= env;
305 if (
s->env_index >=
s->limiter_buf_size)
306 s->env_index -=
s->limiter_buf_size;
309 if (smp_cnt >= nb_samples) {
315 if (smp_cnt < nb_samples) {
317 s->attack_length = 1920;
324 if (peak_delta == -1) {
326 s->gain_reduction[0] =
s->gain_reduction[1];
327 s->gain_reduction[1] = 1.;
331 double gain_reduction;
332 gain_reduction = ceiling / peak_value;
334 if (gain_reduction < s->gain_reduction[1]) {
337 s->attack_length = peak_delta;
338 if (
s->attack_length <= 1)
339 s->attack_length = 2;
341 s->gain_reduction[0] =
s->gain_reduction[1];
342 s->gain_reduction[1] = gain_reduction;
347 for (
s->env_cnt = 0;
s->env_cnt < peak_delta;
s->env_cnt++) {
350 env =
s->gain_reduction[1];
351 buf[
s->env_index +
c] *= env;
355 if (
s->env_index >=
s->limiter_buf_size)
356 s->env_index -=
s->limiter_buf_size;
359 if (smp_cnt >= nb_samples) {
368 for (;
s->env_cnt <
s->release_length;
s->env_cnt++) {
371 env =
s->gain_reduction[0] + (((
double)
s->env_cnt / (
s->release_length - 1)) * (
s->gain_reduction[1] -
s->gain_reduction[0]));
372 buf[
s->env_index +
c] *= env;
376 if (
s->env_index >=
s->limiter_buf_size)
377 s->env_index -=
s->limiter_buf_size;
380 if (smp_cnt >= nb_samples) {
386 if (smp_cnt < nb_samples) {
388 s->limiter_state =
OUT;
394 }
while (smp_cnt < nb_samples);
396 for (n = 0; n < nb_samples; n++) {
400 out[
c] = ceiling * (
out[
c] < 0 ? -1 : 1);
405 if (
index >=
s->limiter_buf_size)
406 index -=
s->limiter_buf_size;
420 int i, n,
c, subframe_length, src_index;
421 double gain, gain_next, env_global, env_shortterm,
422 global, shortterm, lra, relative_threshold;
435 out->pts =
s->pts[0];
438 src = (
const double *)in->
data[0];
439 dst = (
double *)
out->data[0];
441 limiter_buf =
s->limiter_buf;
446 double offset, offset_tp, true_peak;
449 for (
c = 0;
c <
inlink->ch_layout.nb_channels;
c++) {
452 if (
c == 0 ||
tmp > true_peak)
456 offset = pow(10., (
s->target_i - global) / 20.);
457 offset_tp = true_peak *
offset;
458 s->offset = offset_tp <
s->target_tp ?
offset :
s->target_tp / true_peak;
462 switch (
s->frame_type) {
465 for (
c = 0;
c <
inlink->ch_layout.nb_channels;
c++) {
466 buf[
s->buf_index +
c] =
src[
c];
469 s->buf_index +=
inlink->ch_layout.nb_channels;
474 if (shortterm < s->measured_thresh) {
475 s->above_threshold = 0;
476 env_shortterm = shortterm <= -70. ? 0. :
s->target_i -
s->measured_i;
478 s->above_threshold = 1;
479 env_shortterm = shortterm <= -70. ? 0. :
s->target_i - shortterm;
482 for (n = 0; n < 30; n++)
483 s->delta[n] = pow(10., env_shortterm / 20.);
484 s->prev_delta =
s->delta[
s->index];
487 s->limiter_buf_index = 0;
489 for (n = 0; n < (
s->limiter_buf_size /
inlink->ch_layout.nb_channels); n++) {
490 for (
c = 0;
c <
inlink->ch_layout.nb_channels;
c++) {
491 limiter_buf[
s->limiter_buf_index +
c] = buf[
s->buf_index +
c] *
s->delta[
s->index] *
s->offset;
493 s->limiter_buf_index +=
inlink->ch_layout.nb_channels;
494 if (
s->limiter_buf_index >=
s->limiter_buf_size)
495 s->limiter_buf_index -=
s->limiter_buf_size;
497 s->buf_index +=
inlink->ch_layout.nb_channels;
504 out->nb_samples = subframe_length;
514 for (
c = 0;
c <
inlink->ch_layout.nb_channels;
c++) {
515 buf[
s->prev_buf_index +
c] =
src[
c];
516 limiter_buf[
s->limiter_buf_index +
c] = buf[
s->buf_index +
c] * (gain + (((
double) n / in->
nb_samples) * (gain_next - gain))) *
s->offset;
520 s->limiter_buf_index +=
inlink->ch_layout.nb_channels;
521 if (
s->limiter_buf_index >=
s->limiter_buf_size)
522 s->limiter_buf_index -=
s->limiter_buf_size;
524 s->prev_buf_index +=
inlink->ch_layout.nb_channels;
525 if (
s->prev_buf_index >=
s->buf_size)
526 s->prev_buf_index -=
s->buf_size;
528 s->buf_index +=
inlink->ch_layout.nb_channels;
529 if (
s->buf_index >=
s->buf_size)
530 s->buf_index -=
s->buf_size;
534 s->limiter_buf_index =
s->limiter_buf_index + subframe_length < s->limiter_buf_size ?
s->limiter_buf_index + subframe_length :
s->limiter_buf_index + subframe_length -
s->limiter_buf_size;
544 if (
s->above_threshold == 0) {
545 double shortterm_out;
547 if (shortterm >
s->measured_thresh)
548 s->prev_delta *= 1.0058;
551 if (shortterm_out >=
s->target_i)
552 s->above_threshold = 1;
555 if (shortterm < relative_threshold || shortterm <= -70. || s->above_threshold == 0) {
556 s->delta[
s->index] =
s->prev_delta;
558 env_global =
fabs(shortterm - global) < (
s->target_lra / 2.) ? shortterm - global : (
s->target_lra / 2.) * ((shortterm - global) < 0 ? -1 : 1);
559 env_shortterm =
s->target_i - shortterm;
560 s->delta[
s->index] = pow(10., (env_global + env_shortterm) / 20.);
563 s->prev_delta =
s->delta[
s->index];
572 s->limiter_buf_index = 0;
575 for (n = 0; n <
s->limiter_buf_size /
inlink->ch_layout.nb_channels; n++) {
576 for (
c = 0;
c <
inlink->ch_layout.nb_channels;
c++) {
577 s->limiter_buf[
s->limiter_buf_index +
c] =
src[src_index +
c] * gain *
s->offset;
579 src_index +=
inlink->ch_layout.nb_channels;
581 s->limiter_buf_index +=
inlink->ch_layout.nb_channels;
582 if (
s->limiter_buf_index >=
s->limiter_buf_size)
583 s->limiter_buf_index -=
s->limiter_buf_size;
590 for (n = 0; n < subframe_length; n++) {
591 for (
c = 0;
c <
inlink->ch_layout.nb_channels;
c++) {
593 limiter_buf[
s->limiter_buf_index +
c] =
src[src_index +
c] * gain *
s->offset;
595 limiter_buf[
s->limiter_buf_index +
c] = 0.;
600 src_index +=
inlink->ch_layout.nb_channels;
602 s->limiter_buf_index +=
inlink->ch_layout.nb_channels;
603 if (
s->limiter_buf_index >=
s->limiter_buf_size)
604 s->limiter_buf_index -=
s->limiter_buf_size;
607 dst += (subframe_length *
inlink->ch_layout.nb_channels);
610 dst = (
double *)
out->data[0];
616 for (
c = 0;
c <
inlink->ch_layout.nb_channels;
c++) {
617 dst[
c] =
src[
c] *
s->offset;
620 dst +=
inlink->ch_layout.nb_channels;
623 dst = (
double *)
out->data[0];
646 nb_samples = (
s->buf_size /
inlink->ch_layout.nb_channels) -
s->prev_nb_samples;
652 frame->nb_samples = nb_samples;
657 offset = ((
s->limiter_buf_size /
inlink->ch_layout.nb_channels) -
s->prev_nb_samples) *
inlink->ch_layout.nb_channels;
659 s->buf_index =
s->buf_index - offset < 0 ? s->buf_index -
offset +
s->buf_size :
s->buf_index -
offset;
661 for (n = 0; n < nb_samples; n++) {
662 for (
c = 0;
c <
inlink->ch_layout.nb_channels;
c++) {
663 src[
c] = buf[
s->buf_index +
c];
666 s->buf_index +=
inlink->ch_layout.nb_channels;
667 if (
s->buf_index >=
s->buf_size)
668 s->buf_index -=
s->buf_size;
709 s->pts[
i] = in->
pts +
i * nb_samples;
734 static const int input_srate[] = {192000, -1};
768 if (
inlink->ch_layout.nb_channels == 1 &&
s->dual_mono) {
791 s->limiter_buf_index = 0;
792 s->channels =
inlink->ch_layout.nb_channels;
794 s->limiter_state =
OUT;
795 s->offset = pow(10.,
s->offset / 20.);
796 s->target_tp = pow(10.,
s->target_tp / 20.);
810 offset =
s->target_i -
s->measured_i;
811 offset_tp =
s->measured_tp +
offset;
813 if (
s->measured_tp != 99 &&
s->measured_thresh != -70 &&
s->measured_lra != 0 &&
s->measured_i != 0) {
814 if ((offset_tp <= s->target_tp) && (
s->measured_lra <=
s->target_lra)) {
827 double i_in, i_out, lra_in, lra_out, thresh_in, thresh_out, tp_in, tp_out;
830 if (!
s->r128_in || !
s->r128_out)
836 for (
c = 0;
c <
s->channels;
c++) {
839 if ((
c == 0) || (
tmp > tp_in))
846 for (
c = 0;
c <
s->channels;
c++) {
849 if ((
c == 0) || (
tmp > tp_out))
853 switch(
s->print_format) {
860 "\t\"input_i\" : \"%.2f\",\n"
861 "\t\"input_tp\" : \"%.2f\",\n"
862 "\t\"input_lra\" : \"%.2f\",\n"
863 "\t\"input_thresh\" : \"%.2f\",\n"
864 "\t\"output_i\" : \"%.2f\",\n"
865 "\t\"output_tp\" : \"%+.2f\",\n"
866 "\t\"output_lra\" : \"%.2f\",\n"
867 "\t\"output_thresh\" : \"%.2f\",\n"
868 "\t\"normalization_type\" : \"%s\",\n"
869 "\t\"target_offset\" : \"%.2f\"\n"
887 "Input Integrated: %+6.1f LUFS\n"
888 "Input True Peak: %+6.1f dBTP\n"
889 "Input LRA: %6.1f LU\n"
890 "Input Threshold: %+6.1f LUFS\n"
892 "Output Integrated: %+6.1f LUFS\n"
893 "Output True Peak: %+6.1f dBTP\n"
894 "Output LRA: %6.1f LU\n"
895 "Output Threshold: %+6.1f LUFS\n"
897 "Normalization Type: %s\n"
898 "Target Offset: %+6.1f LU\n",
942 .priv_class = &loudnorm_class,
static av_cold int init(AVFilterContext *ctx)
AVFrame * ff_get_audio_buffer(AVFilterLink *link, int nb_samples)
Request an audio samples buffer with a specific set of permissions.
they must not be accessed directly The fifo field contains the frames that are queued in the input for processing by the filter The status_in and status_out fields contains the queued status(EOF or error) of the link
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
static av_cold void uninit(AVFilterContext *ctx)
int ff_filter_frame(AVFilterLink *link, AVFrame *frame)
Send a frame of data to the next filter.
static int frame_size(int sample_rate, int frame_len_msec)
The exact code depends on how similar the blocks are and how related they are to the and needs to apply these operations to the correct inlink or outlink if there are several Macros are available to factor that when no extra processing is inlink
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
This structure describes decoded (raw) audio or video data.
int64_t pts
Presentation timestamp in time_base units (time when frame should be shown to user).
#define FILTER_QUERY_FUNC(func)
static int linear(InterplayACMContext *s, unsigned ind, unsigned col)
@ FF_EBUR128_MODE_I
can call ff_ebur128_loudness_global_* and ff_ebur128_relative_threshold
static char * print_format
enum PrintFormat print_format
const char * name
Filter name.
static const AVFilterPad avfilter_af_loudnorm_outputs[]
A link between two filters.
#define FF_FILTER_FORWARD_STATUS_BACK(outlink, inlink)
Forward the status on an output link to an input link.
int ff_ebur128_loudness_range(FFEBUR128State *st, double *out)
Get loudness range (LRA) of programme in LU.
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
int ff_inlink_consume_frame(AVFilterLink *link, AVFrame **rframe)
Take a frame from the link's FIFO and update the link's stats.
void ff_ebur128_destroy(FFEBUR128State **st)
Destroy library state.
static void true_peak_limiter(LoudNormContext *s, double *out, int nb_samples, int channels)
A filter pad used for either input or output.
@ FF_EBUR128_DUAL_MONO
a channel that is counted twice
static int flush_frame(AVFilterLink *outlink)
#define FF_ARRAY_ELEMS(a)
static int filter_frame(AVFilterLink *inlink, AVFrame *in)
static void ff_outlink_set_status(AVFilterLink *link, int status, int64_t pts)
Set the status field of a link from the source filter.
@ FF_EBUR128_MODE_LRA
can call ff_ebur128_loudness_range
void ff_ebur128_add_frames_double(FFEBUR128State *st, const double *src, size_t frames)
Add frames to be processed.
static int adjust(int x, int size)
enum LimiterState limiter_state
#define FILTER_INPUTS(array)
FrameType
G723.1 frame types.
const AVFilter ff_af_loudnorm
Describe the class of an AVClass context structure.
and forward the result(frame or status change) to the corresponding input. If nothing is possible
static __device__ float fabs(float a)
int ff_inlink_consume_samples(AVFilterLink *link, unsigned min, unsigned max, AVFrame **rframe)
Take samples from the link's FIFO and update the link's stats.
int av_frame_copy_props(AVFrame *dst, const AVFrame *src)
Copy only "metadata" fields from src to dst.
int ff_ebur128_sample_peak(FFEBUR128State *st, unsigned int channel_number, double *out)
Get maximum sample peak of selected channel in float format.
static const AVOption loudnorm_options[]
static int activate(AVFilterContext *ctx)
int ff_inlink_acknowledge_status(AVFilterLink *link, int *rstatus, int64_t *rpts)
Test and acknowledge the change of status on the link.
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
static int query_formats(AVFilterContext *ctx)
AVFILTER_DEFINE_CLASS(loudnorm)
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
int ff_ebur128_loudness_shortterm(FFEBUR128State *st, double *out)
Get short-term loudness (last 3s) in LUFS.
static void init_gaussian_filter(LoudNormContext *s)
int av_frame_is_writable(AVFrame *frame)
Check if the frame data is writable.
AVFilterContext * src
source filter
@ FF_EBUR128_MODE_S
can call ff_ebur128_loudness_shortterm
FFEBUR128State * ff_ebur128_init(unsigned int channels, unsigned long samplerate, unsigned long window, int mode)
Initialize library state.
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf offset
FF_FILTER_FORWARD_WANTED(outlink, inlink)
#define AV_LOG_INFO
Standard information.
enum FrameType frame_type
int nb_samples
number of audio samples (per channel) described by this frame
#define i(width, name, range_min, range_max)
int ff_ebur128_set_channel(FFEBUR128State *st, unsigned int channel_number, int value)
Set channel type.
static av_always_inline av_const double round(double x)
libebur128 - a library for loudness measurement according to the EBU R128 standard.
#define av_malloc_array(a, b)
Contains information about the state of a loudness measurement.
const char * name
Pad name.
static const AVFilterPad avfilter_af_loudnorm_inputs[]
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return or at least make progress towards producing a frame
static int config_input(AVFilterLink *inlink)
int ff_ebur128_relative_threshold(FFEBUR128State *st, double *out)
Get relative threshold in LUFS.
#define FILTER_OUTPUTS(array)
@ FF_EBUR128_MODE_SAMPLE_PEAK
can call ff_ebur128_sample_peak
static void detect_peak(LoudNormContext *s, int offset, int nb_samples, int channels, int *peak_delta, double *peak_value)
static double gaussian_filter(LoudNormContext *s, int index)
FFEBUR128State * r128_out
@ AV_SAMPLE_FMT_DBL
double
int ff_ebur128_loudness_global(FFEBUR128State *st, double *out)
Get global integrated loudness in LUFS.