Go to the documentation of this file.
52 #define PREAMBLE_SIZE 4096
65 for (
i = 0;
i < 2;
i++) {
66 for (j = 0; j < 256; j++) {
67 for (k = 0; k < 8; k++) {
68 gdv->
frame[
i * 2048 + j * 8 + k] = j;
79 for (x = 0; x <
w - 7; x+=8) {
81 dst[x + 1] =
src[(x>>1) + 0];
83 dst[x + 3] =
src[(x>>1) + 1];
85 dst[x + 5] =
src[(x>>1) + 2];
87 dst[x + 7] =
src[(x>>1) + 3];
98 for (x =
w - 1; (x+1) & 7; x--) {
101 for (x -= 7; x >= 0; x -= 8) {
103 dst[x + 7] =
src[(x>>1) + 3];
105 dst[x + 5] =
src[(x>>1) + 2];
107 dst[x + 3] =
src[(x>>1) + 1];
109 dst[x + 1] =
src[(x>>1) + 0];
116 for (x = 0; x <
w - 7; x+=8) {
117 dst[x + 0] =
src[2*x + 0];
118 dst[x + 1] =
src[2*x + 2];
119 dst[x + 2] =
src[2*x + 4];
120 dst[x + 3] =
src[2*x + 6];
121 dst[x + 4] =
src[2*x + 8];
122 dst[x + 5] =
src[2*x +10];
123 dst[x + 6] =
src[2*x +12];
124 dst[x + 7] =
src[2*x +14];
140 for (j = 0; j <
h; j++) {
148 for (j = 0; j <
h; j++) {
152 memcpy(dst1,
src1,
w);
156 if (scale_h && scale_v) {
157 for (y = 0; y < (
h>>1); y++) {
162 }
else if (scale_h) {
163 for (y = 0; y < (
h>>1); y++) {
166 memcpy(dst1,
src1,
w);
168 }
else if (scale_v) {
169 for (y = 0; y <
h; y++) {
183 if (
bits->fill == 0) {
184 bits->queue |= bytestream2_get_byte(gb);
187 res =
bits->queue >> 6;
196 bits->queue = bytestream2_get_le32(gb);
202 int res =
bits->queue & ((1 << nbits) - 1);
204 bits->queue >>= nbits;
206 if (
bits->fill <= 16) {
207 bits->queue |= bytestream2_get_le16(gb) <<
bits->fill;
222 c = bytestream2_get_byte(g2);
223 for (
i = 0;
i <
len;
i++) {
224 bytestream2_put_byte(pb,
c);
230 for (
i = 0;
i <
len;
i++) {
231 bytestream2_put_byte(pb, bytestream2_get_byte(g2));
237 for (
i = 0;
i <
len;
i++) {
238 bytestream2_put_byte(pb, bytestream2_get_byte(g2));
255 for (
c = 0;
c < 256;
c++) {
256 for (
i = 0;
i < 16;
i++) {
264 bytestream2_put_byte(pb, bytestream2_get_byte(gb));
265 }
else if (
tag == 1) {
266 int b = bytestream2_get_byte(gb);
267 int len = (
b & 0xF) + 3;
268 int top = (
b >> 4) & 0xF;
269 int off = (bytestream2_get_byte(gb) << 4) + top - 4096;
271 }
else if (
tag == 2) {
272 int len = (bytestream2_get_byte(gb)) + 2;
301 bytestream2_put_byte(pb, bytestream2_get_byte(gb));
302 }
else if (
tag == 1) {
303 int b = bytestream2_get_byte(gb);
304 int len = (
b & 0xF) + 3;
306 int off = (bytestream2_get_byte(gb) << 4) + top - 4096;
308 }
else if (
tag == 2) {
310 int b = bytestream2_get_byte(gb);
317 len = bytestream2_get_le16(gb);
321 int b = bytestream2_get_byte(gb);
322 int len = (
b & 0x3) + 2;
323 int off = -(
b >> 2) - 1;
349 bytestream2_put_byte(pb, bytestream2_get_byte(gb));
359 if (
val != ((1 << lbits) - 1)) {
365 for (
i = 0;
i <
len;
i++) {
366 bytestream2_put_byte(pb, bytestream2_get_byte(gb));
369 }
else if (
tag == 1) {
376 int bb = bytestream2_get_byte(gb);
377 if ((bb & 0x80) == 0) {
380 int top = (bb & 0x7F) << 8;
381 len = top + bytestream2_get_byte(gb) + 146;
385 }
else if (
tag == 2) {
390 int offs = top + bytestream2_get_byte(gb);
391 if ((subtag != 0) || (offs <= 0xF80)) {
392 int len = (subtag) + 3;
401 real_off = ((offs >> 4) & 0x7) + 1;
402 len = ((offs & 0xF) + 2) * 2;
405 for (
i = 0;
i <
len/2;
i++) {
406 bytestream2_put_byte(pb,
c1);
407 bytestream2_put_byte(pb,
c2);
411 int b = bytestream2_get_byte(gb);
412 int off = ((
b & 0x7F)) + 1;
413 int len = ((
b & 0x80) == 0) ? 2 : 3;
421 int q,
b = bytestream2_get_byte(gb);
422 if ((
b & 0xC0) == 0xC0) {
423 len = ((
b & 0x3F)) + 8;
425 off = (q << 8) + (bytestream2_get_byte(gb)) + 1;
428 if ((
b & 0x80) == 0) {
429 len = ((
b >> 4)) + 6;
432 len = ((
b & 0x3F)) + 14;
435 off = (ofs1 << 8) + (bytestream2_get_byte(gb)) - 4096;
438 int ofs1,
b = bytestream2_get_byte(gb);
440 if ((
b >> 4) == 0xF) {
441 len = bytestream2_get_byte(gb) + 21;
446 off = (ofs1 << 8) + bytestream2_get_byte(gb) - 4096;
472 flags = bytestream2_get_le32(gb);
473 compression =
flags & 0xF;
475 if (compression == 4 || compression == 7 || compression > 8)
487 switch (compression) {
491 for (
i = 0;
i < 256;
i++) {
492 unsigned r = bytestream2_get_byte(gb);
493 unsigned g = bytestream2_get_byte(gb);
494 unsigned b = bytestream2_get_byte(gb);
495 gdv->
pal[
i] = 0xFF
U << 24 |
r << 18 |
g << 10 |
b << 2;
519 dst =
frame->data[0];
525 for (y = 0; y < avctx->
height; y++) {
526 memcpy(dst + didx, gdv->
frame + sidx, avctx->
width);
527 sidx += avctx->
width;
528 didx +=
frame->linesize[0];
534 for (y = 0; y < avctx->
height; y++) {
536 memcpy(dst + didx, gdv->
frame + sidx, avctx->
width);
538 uint8_t *dst2 = dst + didx;
543 if (!gdv->
scale_h || ((y & 1) == 1)) {
546 didx +=
frame->linesize[0];
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
static int decompress_2(AVCodecContext *avctx)
This structure describes decoded (raw) audio or video data.
static av_always_inline int bytestream2_seek(GetByteContext *g, int offset, int whence)
static int decompress_68(AVCodecContext *avctx, unsigned skip, unsigned use8)
static av_always_inline int bytestream2_tell_p(PutByteContext *p)
AVCodec p
The public AVCodec.
static double val(void *priv, double ch)
static int gdv_decode_frame(AVCodecContext *avctx, AVFrame *frame, int *got_frame, AVPacket *avpkt)
static void scaleup(uint8_t *dst, const uint8_t *src, int w)
static av_always_inline int bytestream2_get_bytes_left_p(PutByteContext *p)
static av_always_inline void bytestream2_init_writer(PutByteContext *p, uint8_t *buf, int buf_size)
#define FF_CODEC_DECODE_CB(func)
static int read_bits2(Bits8 *bits, GetByteContext *gb)
int(* init)(AVBSFContext *ctx)
#define av_assert0(cond)
assert() equivalent, that is always enabled.
static av_cold int gdv_decode_init(AVCodecContext *avctx)
static void lz_copy(PutByteContext *pb, GetByteContext *g2, int offset, unsigned len)
#define CODEC_LONG_NAME(str)
static av_cold int gdv_decode_close(AVCodecContext *avctx)
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
static av_always_inline int bytestream2_get_bytes_left(GetByteContext *g)
int ff_get_buffer(AVCodecContext *avctx, AVFrame *frame, int flags)
Get a buffer for a frame.
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() or get_encode_buffer() for allocating buffers and supports custom allocators.
static void rescale(GDVContext *gdv, uint8_t *dst, int w, int h, int scale_v, int scale_h)
static void fill_bits32(Bits32 *bits, GetByteContext *gb)
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf offset
#define i(width, name, range_min, range_max)
static void scaledown(uint8_t *dst, const uint8_t *src, int w)
static av_always_inline void bytestream2_skip_p(PutByteContext *p, unsigned int size)
const FFCodec ff_gdv_decoder
const char * name
Name of the codec implementation.
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
void * av_calloc(size_t nmemb, size_t size)
@ AV_PIX_FMT_PAL8
8 bits with AV_PIX_FMT_RGB32 palette
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return or at least make progress towards producing a frame
static void scaleup_rev(uint8_t *dst, const uint8_t *src, int w)
main external API structure.
static int decompress_5(AVCodecContext *avctx, unsigned skip)
This structure stores compressed data.
int width
picture width / height.
static av_always_inline void bytestream2_init(GetByteContext *g, const uint8_t *buf, int buf_size)
#define flags(name, subs,...)
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
int ff_copy_palette(void *dst, const AVPacket *src, void *logctx)
Check whether the side-data of src contains a palette of size AVPALETTE_SIZE; if so,...
static int read_bits32(Bits32 *bits, GetByteContext *gb, int nbits)
static void BS_FUNC() skip(BSCTX *bc, unsigned int n)
Skip n bits in the buffer.