Go to the documentation of this file.
36 static const uint8_t
NNEDI_XDIM[] = { 8, 16, 32, 48, 8, 16, 32 };
37 static const uint8_t
NNEDI_YDIM[] = { 6, 6, 6, 6, 4, 4, 4 };
38 static const uint16_t
NNEDI_NNS[] = { 16, 32, 64, 128, 256 };
105 int src_stride,
int dst_stride,
108 int src_stride,
int dst_stride,
111 const void *
src, ptrdiff_t src_stride,
116 #define OFFSET(x) offsetof(NNEDIContext, x)
117 #define RFLAGS AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_RUNTIME_PARAM
118 #define FLAGS AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
124 {
"interlaced",
"only deinterlace frames marked as interlaced", 0,
AV_OPT_TYPE_CONST, {.i64=1}, 0, 0,
RFLAGS,
"deint" },
126 {
"af",
"use frame flags, both fields", 0,
AV_OPT_TYPE_CONST, {.i64=-2}, 0, 0,
RFLAGS,
"field" },
127 {
"a",
"use frame flags, single field", 0,
AV_OPT_TYPE_CONST, {.i64=-1}, 0, 0,
RFLAGS,
"field" },
130 {
"tf",
"use both fields, top first", 0,
AV_OPT_TYPE_CONST, {.i64=2}, 0, 0,
RFLAGS,
"field" },
131 {
"bf",
"use both fields, bottom first", 0,
AV_OPT_TYPE_CONST, {.i64=3}, 0, 0,
RFLAGS,
"field" },
133 {
"nsize",
"set size of local neighborhood around each pixel, used by the predictor neural network",
OFFSET(nsize),
AV_OPT_TYPE_INT, {.i64=6}, 0, 6,
RFLAGS,
"nsize" },
172 outlink->
w =
ctx->inputs[0]->w;
173 outlink->
h =
ctx->inputs[0]->h;
175 if (
s->field == -2 ||
s->field > 1)
213 sum =
s->fdsp->scalarproduct_float(kernel,
input, n);
222 return x / (1.0f +
fabsf(x));
232 const void *
src, ptrdiff_t src_stride,
233 uint8_t *prescreen,
int N,
237 const float *src_p =
src;
240 const float *
window = src_p - 2 * src_stride - 5;
242 for (
int j = 0; j <
N; j++) {
246 for (
int i = 0;
i < 4;
i++)
247 memcpy(
input +
i * 12,
window +
i * src_stride + j, 12 *
sizeof(
float));
250 for (
int n = 0; n < 4; n++)
255 for (
int n = 0; n < 4; n++)
260 for (
int n = 0; n < 4; n++)
268 const void *
src, ptrdiff_t src_stride,
269 uint8_t *prescreen,
int N,
273 const float *src_p =
src;
276 const float *
window = src_p - 2 * src_stride - 6;
278 for (
int j = 0; j <
N; j += 4) {
282 for (
int i = 0;
i < 4;
i++)
283 memcpy(
input +
i * 16,
window +
i * src_stride + j, 16 *
sizeof(
float));
285 for (
int n = 0; n < 4; n++)
289 for (
int n = 0; n < 4; n++)
292 for (
int n = 0; n < 4; n++)
293 prescreen[j + n] =
state[n + 4] > 0.
f;
299 return nn * model->
nsize;
327 float *buf,
float mstd[4],
335 for (
int i = 0;
i < model->
ydim;
i++) {
336 memcpy(buf,
src, model->
xdim *
sizeof(
float));
338 for (
int j = 0; j < model->
xdim; j++) {
349 mstd[0] = sum *
scale;
352 tmp = sum_sq *
scale - mstd[0] * mstd[0];
353 if (
tmp < FLT_EPSILON) {
358 mstd[2] = 1.0f / mstd[1];
373 static void wae5(
const float *softmax,
const float *el,
374 int n,
float mstd[4])
376 float vsum = 0.0f, wsum = 0.0f;
378 for (
int i = 0;
i < n;
i++) {
384 mstd[3] += (5.0f * vsum) / wsum * mstd[1] + mstd[0];
390 const void *
src, ptrdiff_t src_stride,
void *dst,
391 const uint8_t *prescreen,
int N,
395 const float *src_p =
src;
399 const float *
window = src_p - (model->
ydim / 2) * src_stride - (model->
xdim / 2 - 1);
400 const int filter_size = model->
nsize;
401 const int nns = model->
nns;
403 for (
int i = 0;
i <
N;
i++) {
405 float activation[256 * 2];
415 for (
int nn = 0; nn < nns; nn++)
418 for (
int nn = 0; nn < nns; nn++)
422 wae5(activation, activation + nns, nns, mstd);
425 for (
int nn = 0; nn < nns; nn++)
428 for (
int nn = 0; nn < nns; nn++)
432 wae5(activation, activation + nns, nns, mstd);
435 dst_p[
i] = mstd[3] * (use_q2 ? 0.5f : 1.f);
440 int src_stride,
int dst_stride,
443 for (
int y = 0; y <
height; y++) {
444 for (
int x = 0; x < 32; x++)
445 dst[-x - 1] =
src[x];
447 for (
int x = 0; x <
width; x++)
450 for (
int x = 0; x < 32; x++)
459 int src_stride,
int dst_stride,
462 const uint16_t *
src = (
const uint16_t *)srcp;
466 for (
int y = 0; y <
height; y++) {
467 for (
int x = 0; x < 32; x++)
470 for (
int x = 0; x <
width; x++)
473 for (
int x = 0; x < 32; x++)
482 int src_stride,
int dst_stride,
486 for (
int y = 0; y <
height; y++) {
487 for (
int x = 0; x <
width; x++)
496 int src_stride,
int dst_stride,
500 uint16_t *dst = (uint16_t *)dstp;
504 for (
int y = 0; y <
height; y++) {
505 for (
int x = 0; x <
width; x++)
514 void *dst,
const uint8_t *prescreen,
int n)
516 const float *src_p =
src;
518 const float *
window = src_p - 2 * src_stride;
520 for (
int i = 0;
i < n;
i++) {
526 accum += (-3.0f / 32.0f) *
window[0 * src_stride +
i];
527 accum += (19.0f / 32.0f) *
window[1 * src_stride +
i];
528 accum += (19.0f / 32.0f) *
window[2 * src_stride +
i];
529 accum += (-3.0f / 32.0f) *
window[3 * src_stride +
i];
540 const float in_scale =
s->in_scale;
541 const float out_scale =
s->out_scale;
542 const int depth =
s->depth;
548 for (
int p = 0; p <
s->nb_planes; p++) {
549 const int height =
s->planeheight[p];
550 const int width =
s->planewidth[p];
551 const int slice_start = 2 * ((
height / 2 * jobnr) / nb_jobs);
553 const uint8_t *src_data = in->
data[p];
554 uint8_t *dst_data =
out->data[p];
555 uint8_t *dst =
out->data[p] + slice_start *
out->linesize[p];
556 const int src_linesize = in->
linesize[p];
557 const int dst_linesize =
out->linesize[p];
558 uint8_t *prescreen_buf =
s->prescreen_buf[jobnr];
559 float *srcbuf =
s->input_buf[jobnr];
560 const int srcbuf_stride =
width + 64;
561 float *dstbuf =
s->output_buf[jobnr];
562 const int dstbuf_stride =
width;
563 const int slice_height = (
slice_end - slice_start) / 2;
565 const uint8_t *in_line;
569 if (!(
s->process_plane & (1 << p))) {
577 y_out = slice_start + (tff ^ (slice_start & 1));
578 in_line = src_data + (y_out * src_linesize);
579 out_line = dst_data + (y_out * dst_linesize);
582 memcpy(out_line, in_line,
s->linesize[p]);
584 in_line += src_linesize * 2;
585 out_line += dst_linesize * 2;
588 y_out = slice_start + ((!tff) ^ (slice_start & 1));
590 s->read(src_data +
FFMAX(y_out - 5, tff) * src_linesize,
592 src_linesize * 2, srcbuf_stride,
594 srcbuf += srcbuf_stride;
596 s->read(src_data +
FFMAX(y_out - 3, tff) * src_linesize,
598 src_linesize * 2, srcbuf_stride,
600 srcbuf += srcbuf_stride;
602 s->read(src_data +
FFMAX(y_out - 1, tff) * src_linesize,
604 src_linesize * 2, srcbuf_stride,
606 srcbuf += srcbuf_stride;
608 in_line = src_data +
FFMIN(y_out + 1,
height - 1 - !tff) * src_linesize;
609 out_line = dst_data + (y_out * dst_linesize);
611 s->read(in_line, srcbuf + 32, src_linesize * 2, srcbuf_stride,
612 width, slice_height - last_slice, in_scale);
614 y_out += (slice_height - last_slice) * 2;
616 s->read(src_data +
FFMIN(y_out + 1,
height - 1 - !tff) * src_linesize,
617 srcbuf + 32 + srcbuf_stride * (slice_height - last_slice),
618 src_linesize * 2, srcbuf_stride,
621 s->read(src_data +
FFMIN(y_out + 3,
height - 1 - !tff) * src_linesize,
622 srcbuf + 32 + srcbuf_stride * (slice_height + 1 - last_slice),
623 src_linesize * 2, srcbuf_stride,
626 s->read(src_data +
FFMIN(y_out + 5,
height - 1 - !tff) * src_linesize,
627 srcbuf + 32 + srcbuf_stride * (slice_height + 2 - last_slice),
628 src_linesize * 2, srcbuf_stride,
631 for (
int y = 0; y <
slice_end - slice_start; y += 2) {
633 s->prescreen[
s->pscrn > 1](
ctx, srcbuf + (y / 2) * srcbuf_stride + 32,
634 srcbuf_stride, prescreen_buf,
width,
635 &
s->prescreener[
s->pscrn - 1]);
638 srcbuf + (y / 2) * srcbuf_stride + 32,
640 dstbuf + (y / 2) * dstbuf_stride,
641 prescreen_buf,
width,
642 &
s->coeffs[
s->etype][
s->nnsparam][
s->nsize],
s->qual == 2);
647 dstbuf + (y / 2) * dstbuf_stride,
648 prescreen_buf,
width);
651 s->write(dstbuf, out_line, dstbuf_stride, dst_linesize * 2,
652 width, slice_height, depth, out_scale);
668 #if FF_API_INTERLACED_FRAME
677 FFMIN(
s->planeheight[1] / 2,
s->nb_threads));
679 if (
s->field == -2 ||
s->field > 1)
680 s->field_n = !
s->field_n;
703 s->pts =
s->prev->pts * 2;
705 if (
ret < 0 || (
s->field > -2 &&
s->field < 2)) {
711 s->pts =
s->prev->pts + in->
pts;
736 ctx->outputs[0]->time_base);
740 }
else if (
ret < 0) {
749 memcpy(dst, *
data, n *
sizeof(
float));
764 int filter_size = nns * xdim * ydim;
768 data =
av_calloc(filter_size + bias_size, 4 *
sizeof(
float));
775 coeffs->
nsize = xdim * ydim;
796 copy_weights(&
s->prescreener[0].kernel_l0[0][0], 4 * 48, &bdata);
799 copy_weights(&
s->prescreener[0].kernel_l1[0][0], 4 * 4, &bdata);
802 copy_weights(&
s->prescreener[0].kernel_l2[0][0], 4 * 8, &bdata);
805 for (
int i = 0;
i < 3;
i++) {
807 float kernel_l0_shuffled[4 * 64];
808 float kernel_l1_shuffled[4 * 4];
816 for (
int n = 0; n < 4; n++) {
817 for (
int k = 0; k < 64; k++)
818 data->kernel_l0[n][k] = kernel_l0_shuffled[(k / 8) * 32 + n * 8 + k % 8];
819 for (
int k = 0; k < 4; k++)
820 data->kernel_l1[n][k] = kernel_l1_shuffled[k * 4 + n];
824 for (
int m = 0; m < 2; m++) {
826 for (
int i = 0;
i < 5;
i++) {
830 for (
int j = 0; j < 7; j++) {
834 const int filter_size = xdim * ydim;
880 for (
int n = 0; n < 4; n++) {
889 for (
int n = 0; n < 4; n++) {
898 const int filter_size = model->
nsize;
899 const int nns = model->
nns;
900 const float scale = 1.f / nns;
902 double softmax_means[256];
903 double elliott_means[256];
904 double mean_filter[48 * 6] = { 0 };
908 for (
int nn = 0; nn < nns; nn++) {
909 softmax_means[nn] =
mean(model->
softmax_q1 + nn * filter_size, filter_size);
910 elliott_means[nn] =
mean(model->
elliott_q1 + nn * filter_size, filter_size);
912 for (
int k = 0; k < filter_size; k++)
913 mean_filter[k] += model->
softmax_q1[nn * filter_size + k] - softmax_means[nn];
916 for (
int k = 0; k < filter_size; k++)
917 mean_filter[k] *=
scale;
921 for (
int nn = 0; nn < nns; nn++) {
922 for (
int k = 0; k < filter_size; k++) {
923 model->
softmax_q1[nn * filter_size + k] -= softmax_means[nn] + mean_filter[k];
924 model->
elliott_q1[nn * filter_size + k] -= elliott_means[nn];
930 memset(mean_filter, 0,
sizeof(mean_filter));
932 for (
int nn = 0; nn < nns; nn++) {
933 softmax_means[nn] =
mean(model->
softmax_q2 + nn * filter_size, filter_size);
934 elliott_means[nn] =
mean(model->
elliott_q2 + nn * filter_size, filter_size);
936 for (
int k = 0; k < filter_size; k++) {
937 mean_filter[k] += model->
softmax_q2[nn * filter_size + k] - softmax_means[nn];
941 for (
int k = 0; k < filter_size; k++)
942 mean_filter[k] *=
scale;
946 for (
int nn = 0; nn < nns; nn++) {
947 for (
int k = 0; k < filter_size; k++) {
948 model->
softmax_q2[nn * filter_size + k] -= softmax_means[nn] + mean_filter[k];
949 model->
elliott_q2[nn * filter_size + k] -= elliott_means[nn];
959 FILE *weights_file =
NULL;
960 int64_t weights_size;
971 if (fseek(weights_file, 0, SEEK_END)) {
973 fclose(weights_file);
977 weights_size = ftell(weights_file);
979 if (weights_size == -1) {
980 fclose(weights_file);
984 fclose(weights_file);
989 if (fseek(weights_file, 0, SEEK_SET)) {
990 fclose(weights_file);
997 fclose(weights_file);
1003 fclose(weights_file);
1009 fclose(weights_file);
1033 s->depth =
desc->comp[0].depth;
1040 s->planewidth[0] =
s->planewidth[3] =
inlink->w;
1042 s->planeheight[0] =
s->planeheight[3] =
inlink->h;
1044 s->half = ((1 << 8) - 1) / 2.f;
1045 s->out_scale = 1 << (
s->depth - 8);
1046 s->in_scale = 1.f /
s->out_scale;
1067 for (
int i = 0;
i < 2;
i++) {
1068 for (
int j = 0; j < 5; j++) {
1069 for (
int k = 0; k < 7; k++)
1074 s->input_size = (
s->planewidth[0] + 64) * (
s->planeheight[0] + 6);
1075 s->input_buf =
av_calloc(
s->nb_threads,
sizeof(*
s->input_buf));
1079 for (
int i = 0;
i <
s->nb_threads;
i++) {
1080 s->input_buf[
i] =
av_calloc(
s->input_size,
sizeof(**
s->input_buf));
1081 if (!
s->input_buf[
i])
1085 s->output_buf =
av_calloc(
s->nb_threads,
sizeof(*
s->output_buf));
1089 for (
int i = 0;
i <
s->nb_threads;
i++) {
1090 s->output_buf[
i] =
av_calloc(
s->input_size,
sizeof(**
s->output_buf));
1091 if (!
s->output_buf[
i])
1095 s->prescreen_buf =
av_calloc(
s->nb_threads,
sizeof(*
s->prescreen_buf));
1096 if (!
s->prescreen_buf)
1099 for (
int i = 0;
i <
s->nb_threads;
i++) {
1100 s->prescreen_buf[
i] =
av_calloc(
s->planewidth[0],
sizeof(**
s->prescreen_buf));
1101 if (!
s->prescreen_buf[
i])
1112 for (
int i = 0;
i <
s->nb_threads &&
s->prescreen_buf;
i++)
1117 for (
int i = 0;
i <
s->nb_threads &&
s->input_buf;
i++)
1122 for (
int i = 0;
i <
s->nb_threads &&
s->output_buf;
i++)
1128 for (
int i = 0;
i < 2;
i++) {
1129 for (
int j = 0; j < 5; j++) {
1130 for (
int k = 0; k < 7; k++) {
1159 .description =
NULL_IF_CONFIG_SMALL(
"Apply neural network edge directed interpolation intra-only deinterlacer."),
1161 .priv_class = &nnedi_class,
AVFrame * ff_get_video_buffer(AVFilterLink *link, int w, int h)
Request a picture buffer with a specific set of permissions.
#define AV_PIX_FMT_YUVA422P16
#define AV_PIX_FMT_GBRAP16
#define FF_ENABLE_DEPRECATION_WARNINGS
static float dot_dsp(const NNEDIContext *const s, const float *kernel, const float *input, int n, float scale, float bias)
AVPixelFormat
Pixel format.
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
static int get_frame(AVFilterContext *ctx, int is_second)
static void subtract_mean_predictor(PredictorCoefficients *model)
int ff_filter_frame(AVFilterLink *link, AVFrame *frame)
Send a frame of data to the next filter.
const AVPixFmtDescriptor * av_pix_fmt_desc_get(enum AVPixelFormat pix_fmt)
#define AVERROR_EOF
End of file.
#define FILTER_PIXFMTS_ARRAY(array)
The exact code depends on how similar the blocks are and how related they are to the and needs to apply these operations to the correct inlink or outlink if there are several Macros are available to factor that when no extra processing is inlink
static const float * softmax_q2_filter(int nn, const PredictorCoefficients *const model)
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
#define AV_PIX_FMT_YUVA422P9
This structure describes decoded (raw) audio or video data.
static av_always_inline av_const unsigned av_clip_uintp2_c(int a, int p)
Clip a signed integer to an unsigned power of two range.
int64_t pts
Presentation timestamp in time_base units (time when frame should be shown to user).
#define AV_PIX_FMT_YUVA420P16
#define AV_PIX_FMT_YUVA420P10
static void read_bytes(const uint8_t *src, float *dst, int src_stride, int dst_stride, int width, int height, float scale)
static uint8_t half(int a, int b)
#define AV_PIX_FMT_YUV420P10
int ff_request_frame(AVFilterLink *link)
Request an input frame from the filter at the other end of the link.
static void process_old(AVFilterContext *ctx, const void *src, ptrdiff_t src_stride, uint8_t *prescreen, int N, const PrescreenerCoefficients *const m_data)
void(* prescreen[2])(AVFilterContext *ctx, const void *src, ptrdiff_t src_stride, uint8_t *prescreen, int N, const PrescreenerCoefficients *const coeffs)
AVFILTER_DEFINE_CLASS(nnedi)
static av_cold void uninit(AVFilterContext *ctx)
@ AV_PIX_FMT_YUV440P
planar YUV 4:4:0 (1 Cr & Cb sample per 1x2 Y samples)
int flags
Frame flags, a combination of AV_FRAME_FLAGS.
const char * name
Filter name.
A link between two filters.
#define AV_PIX_FMT_YUVA422P10
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
void av_image_copy_plane(uint8_t *dst, int dst_linesize, const uint8_t *src, int src_linesize, int bytewidth, int height)
Copy image plane from src to dst.
#define AV_FRAME_FLAG_TOP_FIELD_FIRST
A flag to mark frames where the top field is displayed first if the content is interlaced.
static float elliott(float x)
int av_pix_fmt_count_planes(enum AVPixelFormat pix_fmt)
#define AV_PIX_FMT_YUVA420P9
static SDL_Window * window
static const float * elliott_q2_filter(int nn, const PredictorCoefficients *const model)
#define AV_PIX_FMT_GBRP14
@ AV_PIX_FMT_GBRAP
planar GBRA 4:4:4:4 32bpp
#define AV_PIX_FMT_GBRP10
#define AV_PIX_FMT_YUVA444P16
#define AV_PIX_FMT_YUV422P9
const AVFilter ff_vf_nnedi
static double val(void *priv, double ch)
static const uint8_t NNEDI_XDIM[]
static av_always_inline float scale(float x, float s)
#define AV_PIX_FMT_GRAY16
static __device__ float fabsf(float a)
A filter pad used for either input or output.
static void write_words(const float *src, uint8_t *dstp, int src_stride, int dst_stride, int width, int height, int depth, float scale)
static float softmax_exp(float x)
#define AV_PIX_FMT_YUV444P10
@ AV_PIX_FMT_YUVJ411P
planar YUV 4:1:1, 12bpp, (1 Cr & Cb sample per 4x1 Y samples) full scale (JPEG), deprecated in favor ...
attribute_deprecated int interlaced_frame
The content of the picture is interlaced.
static int filter_slice(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
static const AVFilterPad inputs[]
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
#define AV_PIX_FMT_YUV422P16
static float * allocate(float **ptr, int size)
@ AV_PIX_FMT_YUVJ422P
planar YUV 4:2:2, 16bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV422P and setting col...
#define AV_PIX_FMT_GBRAP10
static const uint16_t NNEDI_NNS[]
int av_image_fill_linesizes(int linesizes[4], enum AVPixelFormat pix_fmt, int width)
Fill plane linesizes for an image with pixel format pix_fmt and width width.
#define AV_PIX_FMT_GBRAP12
@ AV_PIX_FMT_YUVA420P
planar YUV 4:2:0, 20bpp, (1 Cr & Cb sample per 2x2 Y & A samples)
#define AV_PIX_FMT_YUV444P16
#define AV_CEIL_RSHIFT(a, b)
static int slice_end(AVCodecContext *avctx, AVFrame *pict)
Handle slice ends.
AVRational frame_rate
Frame rate of the stream on the link, or 1/0 if unknown or variable; if left to 0/0,...
float kernel_l0[4][16 *4]
static int request_frame(AVFilterLink *link)
#define AV_PIX_FMT_YUVA444P12
#define AV_PIX_FMT_YUV420P9
#define AV_PIX_FMT_YUV420P16
#define AV_PIX_FMT_GRAY14
AVFrame * av_frame_clone(const AVFrame *src)
Create a new frame that references the same data as src.
int64_t av_rescale_q(int64_t a, AVRational bq, AVRational cq)
Rescale a 64-bit integer by 2 rational numbers.
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this field
@ AV_PIX_FMT_YUV420P
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
#define FILTER_INPUTS(array)
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a link
@ AV_PIX_FMT_YUVJ444P
planar YUV 4:4:4, 24bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV444P and setting col...
#define AV_PIX_FMT_GRAY10
#define AV_PIX_FMT_GBRP16
Describe the class of an AVClass context structure.
static const float * softmax_q1_filter(int nn, const PredictorCoefficients *const model)
static void interpolation(const void *src, ptrdiff_t src_stride, void *dst, const uint8_t *prescreen, int n)
#define LOCAL_ALIGNED_32(t, v,...)
int av_frame_copy_props(AVFrame *dst, const AVFrame *src)
Copy only "metadata" fields from src to dst.
PredictorCoefficients coeffs[2][5][7]
static int bias(int x, int c)
static void subtract_mean_old(PrescreenerCoefficients *coeffs, float half)
Rational number (pair of numerator and denominator).
@ AV_PIX_FMT_YUVJ420P
planar YUV 4:2:0, 12bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV420P and setting col...
static void transform_elliott(float *input, int size)
#define AV_PIX_FMT_YUV440P10
void(* write)(const float *src, uint8_t *dst, int src_stride, int dst_stride, int width, int height, int depth, float scale)
static const uint8_t NNEDI_YDIM[]
static __device__ float sqrtf(float a)
static const AVOption nnedi_options[]
#define AV_PIX_FMT_YUV422P10
@ AV_PIX_FMT_GRAY8
Y , 8bpp.
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
#define DECLARE_ALIGNED(n, t, v)
#define AV_PIX_FMT_YUV422P12
static void wae5(const float *softmax, const float *el, int n, float mstd[4])
#define AV_PIX_FMT_YUV444P12
static const float * elliott_q1_filter(int nn, const PredictorCoefficients *const model)
AVFilterContext * src
source filter
int ff_filter_process_command(AVFilterContext *ctx, const char *cmd, const char *arg, char *res, int res_len, int flags)
Generic processing of user supplied commands that are set in the same way as the filter options.
static void predictor(AVFilterContext *ctx, const void *src, ptrdiff_t src_stride, void *dst, const uint8_t *prescreen, int N, const PredictorCoefficients *const model, int use_q2)
@ AV_PIX_FMT_YUVA444P
planar YUV 4:4:4 32bpp, (1 Cr & Cb sample per 1x1 Y & A samples)
#define AV_PIX_FMT_YUVA444P10
static void transform_softmax_exp(float *input, int size)
and forward the test the status of outputs and forward it to the corresponding return FFERROR_NOT_READY If the filters stores internally one or a few frame for some input
static const AVFilterPad outputs[]
static av_cold int init(AVFilterContext *ctx)
static int filter_offset(int nn, const PredictorCoefficients *const model)
#define i(width, name, range_min, range_max)
int w
agreed upon image width
#define AV_PIX_FMT_GBRP12
int ff_filter_get_nb_threads(AVFilterContext *ctx)
Get number of threads for current filter instance.
@ AV_PIX_FMT_YUVJ440P
planar YUV 4:4:0 full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV440P and setting color_range
static enum AVPixelFormat pix_fmts[]
static av_always_inline AVRational av_inv_q(AVRational q)
Invert a rational.
const char * name
Pad name.
FILE * avpriv_fopen_utf8(const char *path, const char *mode)
Open a file using a UTF-8 filename.
#define AV_FRAME_FLAG_INTERLACED
A flag to mark frames whose content is interlaced.
static void write_bytes(const float *src, uint8_t *dst, int src_stride, int dst_stride, int width, int height, int depth, float scale)
void * av_calloc(size_t nmemb, size_t size)
void(* read)(const uint8_t *src, float *dst, int src_stride, int dst_stride, int width, int height, float scale)
#define AV_PIX_FMT_YUV444P9
static void subtract_mean_new(PrescreenerCoefficients *coeffs, float half)
#define AV_PIX_FMT_YUVA444P9
static void gather_input(const float *src, ptrdiff_t src_stride, float *buf, float mstd[4], const PredictorCoefficients *const model)
#define AV_PIX_FMT_YUV420P12
#define AV_PIX_FMT_YUV422P14
static int allocate_model(PredictorCoefficients *coeffs, int xdim, int ydim, int nns)
int h
agreed upon image height
static const size_t NNEDI_WEIGHTS_SIZE
#define AV_PIX_FMT_YUVA422P12
static int filter_frame(AVFilterLink *inlink, AVFrame *in)
static void process_new(AVFilterContext *ctx, const void *src, ptrdiff_t src_stride, uint8_t *prescreen, int N, const PrescreenerCoefficients *const m_data)
static float mean(const float *input, int size)
AVRational time_base
Define the time base used by the PTS of the frames/samples which will pass through this link.
static void read_words(const uint8_t *srcp, float *dst, int src_stride, int dst_stride, int width, int height, float scale)
static void transform(float *input, int size, float mean, float half)
AVRational av_mul_q(AVRational b, AVRational c)
Multiply two rationals.
@ AV_PIX_FMT_YUV444P
planar YUV 4:4:4, 24bpp, (1 Cr & Cb sample per 1x1 Y samples)
#define FF_DISABLE_DEPRECATION_WARNINGS
@ AV_PIX_FMT_GBRP
planar GBR 4:4:4 24bpp
#define AVFILTER_FLAG_SLICE_THREADS
The filter supports multithreading by splitting frames into multiple parts and processing them concur...
@ AV_PIX_FMT_YUV422P
planar YUV 4:2:2, 16bpp, (1 Cr & Cb sample per 2x1 Y samples)
Descriptor that unambiguously describes how the bits of a pixel are stored in the up to 4 data planes...
#define FILTER_OUTPUTS(array)
static int read_weights(AVFilterContext *ctx, const float *bdata)
av_cold AVFloatDSPContext * avpriv_float_dsp_alloc(int bit_exact)
Allocate a float DSP context.
@ AV_PIX_FMT_YUV411P
planar YUV 4:1:1, 12bpp, (1 Cr & Cb sample per 4x1 Y samples)
static int config_input(AVFilterLink *inlink)
#define AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL
Same as AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC, except that the filter will have its filter_frame() c...
int linesize[AV_NUM_DATA_POINTERS]
For video, a positive or negative value, which is typically indicating the size in bytes of each pict...
@ AV_PIX_FMT_YUV410P
planar YUV 4:1:0, 9bpp, (1 Cr & Cb sample per 4x4 Y samples)
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
static void copy_weights(float *dst, int n, const float **data)
#define AV_PIX_FMT_YUV440P12
#define AV_PIX_FMT_YUV444P14
#define AV_PIX_FMT_GRAY12
static av_always_inline int ff_filter_execute(AVFilterContext *ctx, avfilter_action_func *func, void *arg, int *ret, int nb_jobs)
@ AV_PIX_FMT_YUVA422P
planar YUV 4:2:2 24bpp, (1 Cr & Cb sample per 2x1 Y & A samples)
#define AV_PIX_FMT_YUV420P14
PrescreenerCoefficients prescreener[4]
static int config_output(AVFilterLink *outlink)