Go to the documentation of this file.
26 #define BITSTREAM_READER_LE
43 #define DSD_BYTE_READY(low,high) (!(((low) ^ (high)) & 0xff000000))
46 #define PTABLE_BINS (1<<PTABLE_BITS)
47 #define PTABLE_MASK (PTABLE_BINS-1)
50 #define DOWN 0x00010000
54 #define VALUE_ONE (1 << PRECISION)
55 #define PRECISION_USE 12
59 #define MAX_HISTORY_BITS 5
60 #define MAX_HISTORY_BINS (1 << MAX_HISTORY_BITS)
61 #define MAX_BIN_BYTES 1280 // for value_lookup, per bin (2k - 512 - 256)
118 #define LEVEL_DECAY(a) (((a) + 0x80) >> 8)
127 e = (1LL << (p + 1)) - k - 1;
138 for (
i = 0;
i <=
ctx->stereo_in;
i++) {
139 if (
ctx->ch[
i].bitrate_acc > UINT_MAX -
ctx->ch[
i].bitrate_delta)
141 ctx->ch[
i].bitrate_acc +=
ctx->ch[
i].bitrate_delta;
142 br[
i] =
ctx->ch[
i].bitrate_acc >> 16;
145 if (
ctx->stereo_in &&
ctx->hybrid_bitrate) {
146 int balance = (sl[1] - sl[0] + br[1] + 1) >> 1;
147 if (balance > br[0]) {
150 }
else if (-balance > br[0]) {
154 br[1] = br[0] + balance;
155 br[0] = br[0] - balance;
158 for (
i = 0;
i <=
ctx->stereo_in;
i++) {
159 if (
ctx->hybrid_bitrate) {
160 if (sl[
i] - br[
i] > -0x100)
163 ctx->ch[
i].error_limit = 0;
181 if ((
ctx->ch[0].median[0] < 2
U) && (
ctx->ch[1].median[0] < 2
U) &&
182 !
ctx->zero && !
ctx->one) {
201 memset(
ctx->ch[0].median, 0,
sizeof(
ctx->ch[0].median));
202 memset(
ctx->ch[1].median, 0,
sizeof(
ctx->ch[1].median));
266 if (!
c->error_limit) {
271 int mid = (
base * 2
U + add + 1) >> 1;
272 while (add >
c->error_limit) {
276 add -= (mid - (unsigned)
base);
279 add = mid - (unsigned)
base - 1;
280 mid = (
base * 2
U + add + 1) >> 1;
285 if (
ctx->hybrid_bitrate)
304 S *= 1 <<
s->extra_bits;
306 if (
s->got_extra_bits &&
309 *crc = *crc * 9 + (
S & 0xffff) * 3 + ((
unsigned)
S >> 16);
313 bit = (
S &
s->and) |
s->or;
319 return bit <<
s->post_shift;
330 int exp =
s->float_max_exp;
332 if (
s->got_extra_bits) {
333 const int max_bits = 1 + 23 + 8 + 1;
341 S *= 1
U <<
s->float_shift;
345 if (
S >= 0x1000000U) {
346 if (
s->got_extra_bits &&
get_bits1(&
s->gb_extra_bits))
353 exp =
s->float_max_exp;
361 (
s->got_extra_bits &&
365 }
else if (
s->got_extra_bits &&
371 exp =
s->float_max_exp;
380 if (
s->float_max_exp >= 25)
390 *crc = *crc * 27 +
S * 9 +
exp * 3 + sign;
392 value.u = (sign << 31) | (
exp << 23) |
S;
397 uint32_t crc_extra_bits)
403 if (
s->got_extra_bits && crc_extra_bits !=
s->crc_extra_bits) {
413 int value = 0x808000, rate = rate_i << 8;
415 for (
int c = (rate + 128) >> 8;
c--;)
422 if (
value > 0x010000) {
423 rate += (rate * rate_s + 128) >> 8;
425 for (
int c = (rate + 64) >> 7;
c--;)
438 uint32_t checksum = 0xFFFFFFFF;
439 uint8_t *dst_l = dst_left, *dst_r = dst_right;
440 int total_samples =
s->samples, stereo = dst_r ? 1 : 0;
443 uint32_t low, high,
value;
448 rate_i = bytestream2_get_byte(&
s->gbyte);
449 rate_s = bytestream2_get_byte(&
s->gbyte);
459 sp->fltr1 = bytestream2_get_byte(&
s->gbyte) << (
PRECISION - 8);
460 sp->fltr2 = bytestream2_get_byte(&
s->gbyte) << (
PRECISION - 8);
461 sp->fltr3 = bytestream2_get_byte(&
s->gbyte) << (
PRECISION - 8);
462 sp->fltr4 = bytestream2_get_byte(&
s->gbyte) << (
PRECISION - 8);
463 sp->fltr5 = bytestream2_get_byte(&
s->gbyte) << (
PRECISION - 8);
465 sp->factor = bytestream2_get_byte(&
s->gbyte) & 0xff;
466 sp->factor |= (bytestream2_get_byte(&
s->gbyte) << 8) & 0xff00;
467 sp->factor = (
int32_t)((uint32_t)
sp->factor << 16) >> 16;
470 value = bytestream2_get_be32(&
s->gbyte);
474 while (total_samples--) {
477 sp[0].value =
sp[0].fltr1 -
sp[0].fltr5 + ((
sp[0].fltr6 *
sp[0].factor) >> 2);
480 sp[1].value =
sp[1].fltr1 -
sp[1].fltr5 + ((
sp[1].fltr6 *
sp[1].factor) >> 2);
484 uint32_t
split = low + ((high - low) >> 8) * (*pp >> 16);
499 value = (
value << 8) | bytestream2_get_byte(&
s->gbyte);
500 high = (high << 8) | 0xff;
504 sp[0].value +=
sp[0].fltr6 * 8;
505 sp[0].byte = (
sp[0].byte << 1) | (
sp[0].fltr0 & 1);
506 sp[0].factor += (((
sp[0].value ^
sp[0].fltr0) >> 31) | 1) &
510 sp[0].fltr3 += (
sp[0].fltr2 -
sp[0].fltr3) >> 4;
511 sp[0].fltr4 += (
sp[0].fltr3 -
sp[0].fltr4) >> 4;
512 sp[0].value = (
sp[0].fltr4 -
sp[0].fltr5) >> 4;
513 sp[0].fltr5 +=
sp[0].value;
514 sp[0].fltr6 += (
sp[0].value -
sp[0].fltr6) >> 3;
515 sp[0].value =
sp[0].fltr1 -
sp[0].fltr5 + ((
sp[0].fltr6 *
sp[0].factor) >> 2);
521 split = low + ((high - low) >> 8) * (*pp >> 16);
536 value = (
value << 8) | bytestream2_get_byte(&
s->gbyte);
537 high = (high << 8) | 0xff;
541 sp[1].value +=
sp[1].fltr6 * 8;
542 sp[1].byte = (
sp[1].byte << 1) | (
sp[1].fltr0 & 1);
543 sp[1].factor += (((
sp[1].value ^
sp[1].fltr0) >> 31) | 1) &
547 sp[1].fltr3 += (
sp[1].fltr2 -
sp[1].fltr3) >> 4;
548 sp[1].fltr4 += (
sp[1].fltr3 -
sp[1].fltr4) >> 4;
549 sp[1].value = (
sp[1].fltr4 -
sp[1].fltr5) >> 4;
550 sp[1].fltr5 +=
sp[1].value;
551 sp[1].fltr6 += (
sp[1].value -
sp[1].fltr6) >> 3;
552 sp[1].value =
sp[1].fltr1 -
sp[1].fltr5 + ((
sp[1].fltr6 *
sp[1].factor) >> 2);
555 checksum += (checksum << 1) + (*dst_l =
sp[0].
byte & 0xff);
556 sp[0].factor -= (
sp[0].factor + 512) >> 10;
560 checksum += (checksum << 1) + (*dst_r =
filters[1].
byte & 0xff);
570 memset(dst_left, 0x69,
s->samples * 4);
573 memset(dst_right, 0x69,
s->samples * 4);
581 uint8_t *dst_l = dst_left, *dst_r = dst_right;
582 uint8_t history_bits, max_probability;
583 int total_summed_probabilities = 0;
584 int total_samples =
s->samples;
585 uint8_t *vlb =
s->value_lookup_buffer;
586 int history_bins, p0, p1, chan;
587 uint32_t checksum = 0xFFFFFFFF;
588 uint32_t low, high,
value;
593 history_bits = bytestream2_get_byte(&
s->gbyte);
598 history_bins = 1 << history_bits;
599 max_probability = bytestream2_get_byte(&
s->gbyte);
601 if (max_probability < 0xff) {
602 uint8_t *outptr = (uint8_t *)
s->probabilities;
603 uint8_t *outend = outptr +
sizeof(*
s->probabilities) * history_bins;
606 int code = bytestream2_get_byte(&
s->gbyte);
608 if (
code > max_probability) {
609 int zcount =
code - max_probability;
611 while (outptr < outend && zcount--)
621 if (outptr < outend ||
626 sizeof(*
s->probabilities) * history_bins);
631 for (p0 = 0; p0 < history_bins; p0++) {
634 for (
int i = 0;
i < 256;
i++)
635 s->summed_probabilities[p0][
i] = sum_values +=
s->probabilities[p0][
i];
638 total_summed_probabilities += sum_values;
640 if (total_summed_probabilities > history_bins *
MAX_BIN_BYTES)
643 s->value_lookup[p0] = vlb;
645 for (
int i = 0;
i < 256;
i++) {
646 int c =
s->probabilities[p0][
i];
658 low = 0; high = 0xffffffff;
659 value = bytestream2_get_be32(&
s->gbyte);
664 while (total_samples--) {
667 if (!
s->summed_probabilities[p0][255])
670 mult = (high - low) /
s->summed_probabilities[p0][255];
674 value = bytestream2_get_be32(&
s->gbyte);
678 mult = high /
s->summed_probabilities[p0][255];
686 if (
index >=
s->summed_probabilities[p0][255])
690 if ((*dst_l =
code =
s->value_lookup[p0][
index]))
691 low +=
s->summed_probabilities[p0][
code-1] *
mult;
696 low +=
s->summed_probabilities[p0][
code-1] *
mult;
710 high = low +
s->probabilities[p0][
code] *
mult - 1;
711 checksum += (checksum << 1) +
code;
714 p0 =
code & (history_bins-1);
717 p1 =
code & (history_bins-1);
721 value = (
value << 8) | bytestream2_get_byte(&
s->gbyte);
722 high = (high << 8) | 0xff;
731 memset(dst_left, 0x69,
s->samples * 4);
734 memset(dst_right, 0x69,
s->samples * 4);
742 uint8_t *dst_l = dst_left, *dst_r = dst_right;
743 int total_samples =
s->samples;
744 uint32_t checksum = 0xFFFFFFFF;
749 while (total_samples--) {
750 checksum += (checksum << 1) + (*dst_l = bytestream2_get_byte(&
s->gbyte));
754 checksum += (checksum << 1) + (*dst_r = bytestream2_get_byte(&
s->gbyte));
763 memset(dst_left, 0x69,
s->samples * 4);
766 memset(dst_right, 0x69,
s->samples * 4);
773 void *dst_l,
void *dst_r,
const int type)
779 uint32_t crc = 0xFFFFFFFF;
780 uint32_t crc_extra_bits = 0xFFFFFFFF;
781 int16_t *dst16_l = dst_l;
782 int16_t *dst16_r = dst_r;
785 float *dstfl_l = dst_l;
786 float *dstfl_r = dst_r;
788 s->one =
s->zero =
s->zeroes = 0;
796 for (
i = 0;
i <
s->terms;
i++) {
818 L2 =
L + ((decorr->
weightA * (int64_t)
A + 512) >> 10);
819 R2 =
R + ((decorr->
weightB * (int64_t)
B + 512) >> 10);
821 L2 =
L + (unsigned)((
int)(decorr->
weightA * (unsigned)
A + 512) >> 10);
822 R2 =
R + (unsigned)((
int)(decorr->
weightB * (unsigned)
B + 512) >> 10);
830 }
else if (t == -1) {
834 L2 =
L + (unsigned)((
int)(decorr->
weightA * (unsigned)decorr->
samplesA[0] + 512) >> 10);
840 R2 =
R + (unsigned)((
int)(decorr->
weightB * (unsigned)
L2 + 512) >> 10);
848 R2 =
R + (unsigned)((
int)(decorr->
weightB * (unsigned)decorr->
samplesB[0] + 512) >> 10);
860 L2 =
L + (unsigned)((
int)(decorr->
weightA * (unsigned)
R2 + 512) >> 10);
876 L += (unsigned)(
R -= (
unsigned)(
L >> 1));
877 crc = (crc * 3 +
L) * 3 +
R;
890 }
while (!last && count < s->
samples);
892 if (last && count < s->
samples) {
894 memset((uint8_t*)dst_l + count*
size, 0, (
s->samples-count)*
size);
895 memset((uint8_t*)dst_r + count*
size, 0, (
s->samples-count)*
size);
906 void *dst,
const int type)
912 uint32_t crc = 0xFFFFFFFF;
913 uint32_t crc_extra_bits = 0xFFFFFFFF;
914 int16_t *dst16 = dst;
918 s->one =
s->zero =
s->zeroes = 0;
924 for (
i = 0;
i <
s->terms;
i++) {
940 S =
T + ((decorr->
weightA * (int64_t)
A + 512) >> 10);
942 S =
T + (unsigned)((
int)(decorr->
weightA * (unsigned)
A + 512) >> 10);
958 }
while (!last && count < s->
samples);
960 if (last && count < s->
samples) {
962 memset((uint8_t*)dst + count*
size, 0, (
s->samples-count)*
size);
981 if (!
c->fdec[
c->fdec_num])
984 c->fdec[
c->fdec_num - 1]->avctx =
c->avctx;
999 if (
channels > INT_MAX /
sizeof(*
s->dsdctx))
1008 memset(
s->dsdctx[
i].buf, 0x69,
sizeof(
s->dsdctx[
i].buf));
1047 if (!
s->curr_frame.f || !
s->prev_frame.f)
1059 for (
int i = 0;
i <
s->fdec_num;
i++)
1076 const uint8_t *buf,
int buf_size)
1082 void *samples_l =
NULL, *samples_r =
NULL;
1084 int got_terms = 0, got_weights = 0, got_samples = 0,
1085 got_entropy = 0, got_pcm = 0, got_float = 0, got_hybrid = 0;
1088 int bpp, chan = 0, orig_bpp,
sample_rate = 0, rate_x = 1, dsd_mode = 0;
1090 uint64_t chmask = 0;
1097 s = wc->
fdec[block_no];
1105 memset(
s->ch, 0,
sizeof(
s->ch));
1107 s->and =
s->or =
s->shift = 0;
1108 s->got_extra_bits = 0;
1112 s->samples = bytestream2_get_le32(&gb);
1115 "a sequence: %d and %d\n", wc->
samples,
s->samples);
1118 s->frame_flags = bytestream2_get_le32(&gb);
1122 else if ((
s->frame_flags & 0x03) <= 1)
1131 orig_bpp = ((
s->frame_flags & 0x03) + 1) << 3;
1134 s->stereo = !(
s->frame_flags &
WV_MONO);
1139 s->post_shift = bpp * 8 - orig_bpp + ((
s->frame_flags >> 13) & 0x1f);
1140 if (
s->post_shift < 0 ||
s->post_shift > 31) {
1143 s->hybrid_maxclip = ((1LL << (orig_bpp - 1)) - 1);
1144 s->hybrid_minclip = ((-1UL << (orig_bpp - 1)));
1145 s->CRC = bytestream2_get_le32(&gb);
1149 id = bytestream2_get_byte(&gb);
1150 size = bytestream2_get_byte(&gb);
1152 size |= (bytestream2_get_le16u(&gb)) << 8;
1159 "Got incorrect block %02X with size %i\n",
id,
size);
1164 "Block size %i is out of bounds\n",
size);
1176 for (
i = 0;
i <
s->terms;
i++) {
1177 uint8_t
val = bytestream2_get_byte(&gb);
1178 s->decorr[
s->terms -
i - 1].value = (
val & 0x1F) - 5;
1179 s->decorr[
s->terms -
i - 1].delta =
val >> 5;
1195 t = (int8_t)bytestream2_get_byte(&gb);
1196 s->decorr[
s->terms -
i - 1].weightA = t * (1 << 3);
1197 if (
s->decorr[
s->terms -
i - 1].weightA > 0)
1198 s->decorr[
s->terms -
i - 1].weightA +=
1199 (
s->decorr[
s->terms -
i - 1].weightA + 64) >> 7;
1201 t = (int8_t)bytestream2_get_byte(&gb);
1202 s->decorr[
s->terms -
i - 1].weightB = t * (1 << 3);
1203 if (
s->decorr[
s->terms -
i - 1].weightB > 0)
1204 s->decorr[
s->terms -
i - 1].weightB +=
1205 (
s->decorr[
s->terms -
i - 1].weightB + 64) >> 7;
1216 for (
i =
s->terms - 1; (
i >= 0) && (t <
size);
i--) {
1219 if (decorr->
value > 8) {
1221 wp_exp2(bytestream2_get_le16(&gb));
1223 wp_exp2(bytestream2_get_le16(&gb));
1227 wp_exp2(bytestream2_get_le16(&gb));
1229 wp_exp2(bytestream2_get_le16(&gb));
1233 }
else if (decorr->
value < 0) {
1235 wp_exp2(bytestream2_get_le16(&gb));
1237 wp_exp2(bytestream2_get_le16(&gb));
1240 for (j = 0; j < decorr->
value; j++) {
1242 wp_exp2(bytestream2_get_le16(&gb));
1245 wp_exp2(bytestream2_get_le16(&gb));
1248 t += decorr->
value * 2 * (
s->stereo_in + 1);
1254 if (
size != 6 * (
s->stereo_in + 1)) {
1256 "Entropy vars size should be %i, got %i.\n",
1257 6 * (
s->stereo_in + 1),
size);
1261 for (j = 0; j <=
s->stereo_in; j++)
1262 for (
i = 0;
i < 3;
i++) {
1263 s->ch[j].median[
i] =
wp_exp2(bytestream2_get_le16(&gb));
1268 if (
s->hybrid_bitrate) {
1269 for (
i = 0;
i <=
s->stereo_in;
i++) {
1270 s->ch[
i].slow_level =
wp_exp2(bytestream2_get_le16(&gb));
1274 for (
i = 0;
i < (
s->stereo_in + 1);
i++) {
1275 s->ch[
i].bitrate_acc = bytestream2_get_le16(&gb) << 16;
1279 for (
i = 0;
i < (
s->stereo_in + 1);
i++) {
1280 s->ch[
i].bitrate_delta =
1281 wp_exp2((int16_t)bytestream2_get_le16(&gb));
1284 for (
i = 0;
i < (
s->stereo_in + 1);
i++)
1285 s->ch[
i].bitrate_delta = 0;
1293 "Invalid INT32INFO, size = %i\n",
1301 "Invalid INT32INFO, extra_bits = %d (> 30)\n",
val[0]);
1304 s->extra_bits =
val[0];
1316 if (
s->shift > 31) {
1318 "Invalid INT32INFO, shift = %d (> 31)\n",
s->shift);
1319 s->and =
s->or =
s->shift = 0;
1324 if (
s->hybrid && bpp == 4 &&
s->post_shift < 8 &&
s->shift > 8) {
1327 s->hybrid_maxclip >>= 8;
1328 s->hybrid_minclip >>= 8;
1335 "Invalid FLOATINFO, size = %i\n",
size);
1339 s->float_flag = bytestream2_get_byte(&gb);
1340 s->float_shift = bytestream2_get_byte(&gb);
1341 s->float_max_exp = bytestream2_get_byte(&gb);
1342 if (
s->float_shift > 31) {
1344 "Invalid FLOATINFO, shift = %d (> 31)\n",
s->float_shift);
1364 rate_x = bytestream2_get_byte(&gb);
1367 rate_x = 1 << rate_x;
1368 dsd_mode = bytestream2_get_byte(&gb);
1369 if (dsd_mode && dsd_mode != 1 && dsd_mode != 3) {
1389 s->got_extra_bits = 1;
1394 "Insufficient channel information\n");
1397 chan = bytestream2_get_byte(&gb);
1400 chmask = bytestream2_get_byte(&gb);
1403 chmask = bytestream2_get_le16(&gb);
1406 chmask = bytestream2_get_le24(&gb);
1409 chmask = bytestream2_get_le32(&gb);
1412 size = bytestream2_get_byte(&gb);
1413 chan |= (bytestream2_get_byte(&gb) & 0xF) << 8;
1415 chmask = bytestream2_get_le24(&gb);
1418 size = bytestream2_get_byte(&gb);
1419 chan |= (bytestream2_get_byte(&gb) & 0xF) << 8;
1421 chmask = bytestream2_get_le32(&gb);
1459 if (
s->hybrid && !got_hybrid) {
1469 const int wanted =
s->samples *
s->extra_bits <<
s->stereo_in;
1470 if (
size < wanted) {
1472 s->got_extra_bits = 0;
1477 if (!got_pcm && !got_dsd) {
1491 int sr = (
s->frame_flags >> 23) & 0
xf;
1501 if (new_samplerate * (uint64_t)rate_x > INT_MAX)
1503 new_samplerate *= rate_x;
1523 !!got_dsd != !!wc->
dsdctx) {
1563 if (dsd_mode == 3) {
1565 }
else if (dsd_mode == 1) {
1577 if (dsd_mode == 3) {
1579 }
else if (dsd_mode == 1) {
1591 memcpy(samples_r, samples_l, bpp *
s->samples);
1617 int *got_frame_ptr,
AVPacket *avpkt)
1620 const uint8_t *buf = avpkt->
data;
1621 int buf_size = avpkt->
size;
1633 frame_flags =
AV_RL32(buf + 24);
1646 if (frame_size <= 0 || frame_size > buf_size) {
1648 "Block %d has invalid size (size %d vs. %d bytes left)\n",
1692 .
p.
name =
"wavpack",
static void error(const char *err)
#define WV_HYBRID_BITRATE
@ AV_SAMPLE_FMT_FLTP
float, planar
#define AV_LOG_WARNING
Something somehow does not look correct.
F H1 F F H1 F F F F H1<-F-------F-------F v v v H2 H3 H2 ^ ^ ^ F-------F-------F-> H1<-F-------F-------F|||||||||F H1 F|||||||||F H1 Funavailable fullpel samples(outside the picture for example) shall be equalto the closest available fullpel sampleSmaller pel interpolation:--------------------------if diag_mc is set then points which lie on a line between 2 vertically, horizontally or diagonally adjacent halfpel points shall be interpolatedlinearly with rounding to nearest and halfway values rounded up.points which lie on 2 diagonals at the same time should only use the onediagonal not containing the fullpel point F--> O q O<--h1-> O q O<--F v \/v \/v O O O O O O O|/|\|q q q q q|/|\|O O O O O O O ^/\ ^/\ ^ h2--> O q O<--h3-> O q O<--h2 v \/v \/v O O O O O O O|\|/|q q q q q|\|/|O O O O O O O ^/\ ^/\ ^ F--> O q O<--h1-> O q O<--Fthe remaining points shall be bilinearly interpolated from theup to 4 surrounding halfpel and fullpel points, again rounding should be tonearest and halfway values rounded upcompliant Snow decoders MUST support 1-1/8 pel luma and 1/2-1/16 pel chromainterpolation at leastOverlapped block motion compensation:-------------------------------------FIXMELL band prediction:===================Each sample in the LL0 subband is predicted by the median of the left, top andleft+top-topleft samples, samples outside the subband shall be considered tobe 0. To reverse this prediction in the decoder apply the following.for(y=0;y< height;y++){ for(x=0;x< width;x++){ sample[y][x]+=median(sample[y-1][x], sample[y][x-1], sample[y-1][x]+sample[y][x-1]-sample[y-1][x-1]);}}sample[-1][ *]=sample[ *][-1]=0;width, height here are the width and height of the LL0 subband not of the finalvideoDequantization:===============FIXMEWavelet Transform:==================Snow supports 2 wavelet transforms, the symmetric biorthogonal 5/3 integertransform and an integer approximation of the symmetric biorthogonal 9/7daubechies wavelet.2D IDWT(inverse discrete wavelet transform) --------------------------------------------The 2D IDWT applies a 2D filter recursively, each time combining the4 lowest frequency subbands into a single subband until only 1 subbandremains.The 2D filter is done by first applying a 1D filter in the vertical directionand then applying it in the horizontal one. --------------- --------------- --------------- ---------------|LL0|HL0|||||||||||||---+---|HL1||L0|H0|HL1||LL1|HL1|||||LH0|HH0|||||||||||||-------+-------|-> L1 H1 LH1 HH1 LH1 HH1 LH1 HH1 L2
#define AV_EF_EXPLODE
abort decoding on minor error detection
#define FF_CODEC_CAP_INIT_CLEANUP
The codec allows calling the close function for deallocation even if the init function returned a fai...
static int get_bits_left(GetBitContext *gb)
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
int sample_rate
samples per second
#define u(width, name, range_min, range_max)
static int wv_unpack_dsd_high(WavpackFrameContext *s, uint8_t *dst_left, uint8_t *dst_right)
int err_recognition
Error recognition; may misdetect some more or less valid parts as errors.
static void wavpack_decode_flush(AVCodecContext *avctx)
static unsigned int get_bits_long(GetBitContext *s, int n)
Read 0-32 bits.
#define WV_FLT_SHIFT_ONES
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
This structure describes decoded (raw) audio or video data.
static const uint16_t table[]
@ AV_SAMPLE_FMT_S32P
signed 32 bits, planar
int nb_channels
Number of channels in this layout.
the pkt_dts and pkt_pts fields in AVFrame will work as usual Restrictions on codec whose streams don t reset across will not work because their bitstreams cannot be decoded in parallel *The contents of buffers must not be read before ff_thread_await_progress() has been called on them. reget_buffer() and buffer age optimizations no longer work. *The contents of buffers must not be written to after ff_thread_report_progress() has been called on them. This includes draw_edges(). Porting codecs to frame threading
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
#define bit(string, value)
static int wv_unpack_dsd_copy(WavpackFrameContext *s, uint8_t *dst_left, uint8_t *dst_right)
static av_always_inline void bytestream2_skip(GetByteContext *g, unsigned int size)
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
static int update_error_limit(WavpackFrameContext *ctx)
AVCodec p
The public AVCodec.
AVChannelLayout ch_layout
Audio channel layout.
const FFCodec ff_wavpack_decoder
static double val(void *priv, double ch)
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf type
static int wavpack_decode_block(AVCodecContext *avctx, int block_no, const uint8_t *buf, int buf_size)
static av_always_inline int wp_log2(uint32_t val)
AVFrame * av_frame_alloc(void)
Allocate an AVFrame and set its fields to default values.
static int16_t mult(Float11 *f1, Float11 *f2)
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
static int init_get_bits8(GetBitContext *s, const uint8_t *buffer, int byte_size)
Initialize GetBitContext.
void ff_thread_report_progress(ThreadFrame *f, int n, int field)
Notify later decoding threads when part of their reference picture is ready.
#define FF_CODEC_DECODE_CB(func)
#define AV_GET_BUFFER_FLAG_REF
The decoder will keep a reference to the frame and may reuse it later.
static const int wv_rates[16]
FF_ENABLE_DEPRECATION_WARNINGS int av_channel_layout_from_mask(AVChannelLayout *channel_layout, uint64_t mask)
Initialize a native channel layout from a bitmask indicating which channels are present.
int(* init)(AVBSFContext *ctx)
#define filters(fmt, type, inverse, clp, inverset, clip, one, clip_fn, packed)
static av_always_inline int wp_exp2(int16_t val)
uint16_t summed_probabilities[MAX_HISTORY_BINS][256]
int bits_per_raw_sample
Bits per sample/pixel of internal libavcodec pixel/sample format.
#define CODEC_LONG_NAME(str)
int ff_thread_ref_frame(ThreadFrame *dst, const ThreadFrame *src)
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
#define AV_CODEC_CAP_FRAME_THREADS
Codec supports frame-level multithreading.
#define av_realloc_f(p, o, n)
static int wavpack_decode_frame(AVCodecContext *avctx, AVFrame *rframe, int *got_frame_ptr, AVPacket *avpkt)
#define DSD_BYTE_READY(low, high)
DSDContext * dsdctx
RefStruct reference.
WavpackFrameContext ** fdec
static unsigned int get_bits1(GetBitContext *s)
void ff_thread_release_ext_buffer(ThreadFrame *f)
Unref a ThreadFrame.
static av_always_inline unsigned int bytestream2_get_buffer(GetByteContext *g, uint8_t *dst, unsigned int size)
static void * ff_refstruct_allocz(size_t size)
Equivalent to ff_refstruct_alloc_ext(size, 0, NULL, NULL)
#define UPDATE_THREAD_CONTEXT(func)
static int get_unary_0_33(GetBitContext *gb)
Get unary code terminated by a 0 with a maximum length of 33.
#define AV_EF_CRCCHECK
Verify checksums embedded in the bitstream (could be of either encoded or decoded data,...
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
static int wv_get_value_integer(WavpackFrameContext *s, uint32_t *crc, unsigned S)
static av_always_inline int bytestream2_get_bytes_left(GetByteContext *g)
#define AV_CODEC_CAP_CHANNEL_CONF
Codec should fill in channel configuration and samplerate instead of container.
av_cold void ff_init_dsd_data(void)
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() or get_encode_buffer() for allocating buffers and supports custom allocators.
int av_frame_ref(AVFrame *dst, const AVFrame *src)
Set up a new reference to the data described by the source frame.
An AVChannelLayout holds information about the channel layout of audio data.
static int shift(int a, int b)
static int wv_check_crc(WavpackFrameContext *s, uint32_t crc, uint32_t crc_extra_bits)
enum AVSampleFormat sample_fmt
audio sample format
#define FF_CODEC_CAP_ALLOCATE_PROGRESS
static char * split(char *message, char delim)
static void init_ptable(int *table, int rate_i, int rate_s)
#define AV_CODEC_CAP_SLICE_THREADS
Codec supports slice-based (or partition-based) multithreading.
#define WV_FLT_SHIFT_SENT
@ AV_SAMPLE_FMT_S16P
signed 16 bits, planar
int av_channel_layout_compare(const AVChannelLayout *chl, const AVChannelLayout *chl1)
Check whether two channel layouts are semantically the same, i.e.
static int wv_unpack_stereo(WavpackFrameContext *s, GetBitContext *gb, void *dst_l, void *dst_r, const int type)
void av_channel_layout_default(AVChannelLayout *ch_layout, int nb_channels)
Get the default channel layout for a given number of channels.
static int wv_unpack_mono(WavpackFrameContext *s, GetBitContext *gb, void *dst, const int type)
int nb_samples
number of audio samples (per channel) described by this frame
#define i(width, name, range_min, range_max)
and forward the test the status of outputs and forward it to the corresponding return FFERROR_NOT_READY If the filters stores internally one or a few frame for some it can consider them to be part of the FIFO and delay acknowledging a status change accordingly Example code
static av_cold int wavpack_decode_end(AVCodecContext *avctx)
int av_get_bytes_per_sample(enum AVSampleFormat sample_fmt)
Return number of bytes per sample.
uint8_t ** extended_data
pointers to the data planes/channels.
static av_always_inline unsigned get_tail(GetBitContext *gb, unsigned k)
static const int weights[]
AVSampleFormat
Audio sample formats.
#define xf(width, name, var, range_min, range_max, subs,...)
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf default value
#define WV_FLT_SHIFT_SAME
void * av_mallocz(size_t size)
Allocate a memory block with alignment suitable for all memory accesses (including vectors if availab...
const char * name
Name of the codec implementation.
the pkt_dts and pkt_pts fields in AVFrame will work as usual Restrictions on codec whose streams don t reset across will not work because their bitstreams cannot be decoded in parallel *The contents of buffers must not be read before as well as code calling up to before the decode process starts Call have update_thread_context() run it in the next thread. Add AV_CODEC_CAP_FRAME_THREADS to the codec capabilities. There will be very little speed gain at this point but it should work. If there are inter-frame dependencies
int ff_thread_get_ext_buffer(AVCodecContext *avctx, ThreadFrame *f, int flags)
Wrapper around ff_get_buffer() for frame-multithreaded codecs.
void ff_dsd2pcm_translate(DSDContext *s, size_t samples, int lsbf, const uint8_t *src, ptrdiff_t src_stride, float *dst, ptrdiff_t dst_stride)
uint8_t value_lookup_buffer[MAX_HISTORY_BINS *MAX_BIN_BYTES]
static int wv_unpack_dsd_fast(WavpackFrameContext *s, uint8_t *dst_left, uint8_t *dst_right)
#define FFSWAP(type, a, b)
void ff_refstruct_replace(void *dstp, const void *src)
Ensure *dstp refers to the same object as src.
the pkt_dts and pkt_pts fields in AVFrame will work as usual Restrictions on codec whose streams don t reset across will not work because their bitstreams cannot be decoded in parallel *The contents of buffers must not be read before as well as code calling up to before the decode process starts Call ff_thread_finish_setup() afterwards. If some code can 't be moved
#define AV_INPUT_BUFFER_PADDING_SIZE
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_RL32
GetBitContext gb_extra_bits
static av_cold int wavpack_decode_init(AVCodecContext *avctx)
main external API structure.
#define UPDATE_WEIGHT_CLIP(weight, delta, samples, in)
static int wv_get_value(WavpackFrameContext *ctx, GetBitContext *gb, int channel, int *last)
static float wv_get_value_float(WavpackFrameContext *s, uint32_t *crc, int S)
Filter the word “frame” indicates either a video frame or a group of audio samples
static const int factor[16]
int av_channel_layout_copy(AVChannelLayout *dst, const AVChannelLayout *src)
Make a copy of a channel layout.
static av_cold int wv_alloc_frame_context(WavpackContext *c)
uint8_t probabilities[MAX_HISTORY_BINS][256]
This structure stores compressed data.
static av_always_inline void bytestream2_init(GetByteContext *g, const uint8_t *buf, int buf_size)
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
static int wv_dsd_reset(WavpackContext *s, int channels)
uint8_t * value_lookup[MAX_HISTORY_BINS]
int(* execute2)(struct AVCodecContext *c, int(*func)(struct AVCodecContext *c2, void *arg, int jobnr, int threadnr), void *arg2, int *ret, int count)
The codec may call this to execute several independent things.
void ff_refstruct_unref(void *objp)
Decrement the reference count of the underlying object and automatically free the object if there are...
static int dsd_channel(AVCodecContext *avctx, void *frmptr, int jobnr, int threadnr)