FFmpeg
af_loudnorm.c
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2016 Kyle Swanson <k@ylo.ph>.
3  *
4  * This file is part of FFmpeg.
5  *
6  * FFmpeg is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * FFmpeg is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with FFmpeg; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19  */
20 
21 /* http://k.ylo.ph/2016/04/04/loudnorm.html */
22 
23 #include "libavutil/opt.h"
24 #include "avfilter.h"
25 #include "filters.h"
26 #include "formats.h"
27 #include "internal.h"
28 #include "audio.h"
29 #include "ebur128.h"
30 
31 enum FrameType {
37 };
38 
40  OUT,
45 };
46 
52 };
53 
54 typedef struct LoudNormContext {
55  const AVClass *class;
56  double target_i;
57  double target_lra;
58  double target_tp;
59  double measured_i;
60  double measured_lra;
61  double measured_tp;
63  double offset;
64  int linear;
65  int dual_mono;
67 
68  double *buf;
69  int buf_size;
70  int buf_index;
72 
73  double delta[30];
74  double weights[21];
75  double prev_delta;
76  int index;
77 
78  double gain_reduction[2];
79  double *limiter_buf;
80  double *prev_smp;
85  int env_index;
86  int env_cnt;
89 
90  int64_t pts[30];
94  int channels;
95 
99 
100 #define OFFSET(x) offsetof(LoudNormContext, x)
101 #define FLAGS AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
102 
103 static const AVOption loudnorm_options[] = {
104  { "I", "set integrated loudness target", OFFSET(target_i), AV_OPT_TYPE_DOUBLE, {.dbl = -24.}, -70., -5., FLAGS },
105  { "i", "set integrated loudness target", OFFSET(target_i), AV_OPT_TYPE_DOUBLE, {.dbl = -24.}, -70., -5., FLAGS },
106  { "LRA", "set loudness range target", OFFSET(target_lra), AV_OPT_TYPE_DOUBLE, {.dbl = 7.}, 1., 50., FLAGS },
107  { "lra", "set loudness range target", OFFSET(target_lra), AV_OPT_TYPE_DOUBLE, {.dbl = 7.}, 1., 50., FLAGS },
108  { "TP", "set maximum true peak", OFFSET(target_tp), AV_OPT_TYPE_DOUBLE, {.dbl = -2.}, -9., 0., FLAGS },
109  { "tp", "set maximum true peak", OFFSET(target_tp), AV_OPT_TYPE_DOUBLE, {.dbl = -2.}, -9., 0., FLAGS },
110  { "measured_I", "measured IL of input file", OFFSET(measured_i), AV_OPT_TYPE_DOUBLE, {.dbl = 0.}, -99., 0., FLAGS },
111  { "measured_i", "measured IL of input file", OFFSET(measured_i), AV_OPT_TYPE_DOUBLE, {.dbl = 0.}, -99., 0., FLAGS },
112  { "measured_LRA", "measured LRA of input file", OFFSET(measured_lra), AV_OPT_TYPE_DOUBLE, {.dbl = 0.}, 0., 99., FLAGS },
113  { "measured_lra", "measured LRA of input file", OFFSET(measured_lra), AV_OPT_TYPE_DOUBLE, {.dbl = 0.}, 0., 99., FLAGS },
114  { "measured_TP", "measured true peak of input file", OFFSET(measured_tp), AV_OPT_TYPE_DOUBLE, {.dbl = 99.}, -99., 99., FLAGS },
115  { "measured_tp", "measured true peak of input file", OFFSET(measured_tp), AV_OPT_TYPE_DOUBLE, {.dbl = 99.}, -99., 99., FLAGS },
116  { "measured_thresh", "measured threshold of input file", OFFSET(measured_thresh), AV_OPT_TYPE_DOUBLE, {.dbl = -70.}, -99., 0., FLAGS },
117  { "offset", "set offset gain", OFFSET(offset), AV_OPT_TYPE_DOUBLE, {.dbl = 0.}, -99., 99., FLAGS },
118  { "linear", "normalize linearly if possible", OFFSET(linear), AV_OPT_TYPE_BOOL, {.i64 = 1}, 0, 1, FLAGS },
119  { "dual_mono", "treat mono input as dual-mono", OFFSET(dual_mono), AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, FLAGS },
120  { "print_format", "set print format for stats", OFFSET(print_format), AV_OPT_TYPE_INT, {.i64 = NONE}, NONE, PF_NB -1, FLAGS, .unit = "print_format" },
121  { "none", 0, 0, AV_OPT_TYPE_CONST, {.i64 = NONE}, 0, 0, FLAGS, .unit = "print_format" },
122  { "json", 0, 0, AV_OPT_TYPE_CONST, {.i64 = JSON}, 0, 0, FLAGS, .unit = "print_format" },
123  { "summary", 0, 0, AV_OPT_TYPE_CONST, {.i64 = SUMMARY}, 0, 0, FLAGS, .unit = "print_format" },
124  { NULL }
125 };
126 
127 AVFILTER_DEFINE_CLASS(loudnorm);
128 
129 static inline int frame_size(int sample_rate, int frame_len_msec)
130 {
131  const int frame_size = round((double)sample_rate * (frame_len_msec / 1000.0));
132  return frame_size + (frame_size % 2);
133 }
134 
136 {
137  double total_weight = 0.0;
138  const double sigma = 3.5;
139  double adjust;
140  int i;
141 
142  const int offset = 21 / 2;
143  const double c1 = 1.0 / (sigma * sqrt(2.0 * M_PI));
144  const double c2 = 2.0 * pow(sigma, 2.0);
145 
146  for (i = 0; i < 21; i++) {
147  const int x = i - offset;
148  s->weights[i] = c1 * exp(-(pow(x, 2.0) / c2));
149  total_weight += s->weights[i];
150  }
151 
152  adjust = 1.0 / total_weight;
153  for (i = 0; i < 21; i++)
154  s->weights[i] *= adjust;
155 }
156 
158 {
159  double result = 0.;
160  int i;
161 
162  index = index - 10 > 0 ? index - 10 : index + 20;
163  for (i = 0; i < 21; i++)
164  result += s->delta[((index + i) < 30) ? (index + i) : (index + i - 30)] * s->weights[i];
165 
166  return result;
167 }
168 
169 static void detect_peak(LoudNormContext *s, int offset, int nb_samples, int channels, int *peak_delta, double *peak_value)
170 {
171  int n, c, i, index;
172  double ceiling;
173  double *buf;
174 
175  *peak_delta = -1;
176  buf = s->limiter_buf;
177  ceiling = s->target_tp;
178 
179  index = s->limiter_buf_index + (offset * channels) + (1920 * channels);
180  if (index >= s->limiter_buf_size)
181  index -= s->limiter_buf_size;
182 
183  if (s->frame_type == FIRST_FRAME) {
184  for (c = 0; c < channels; c++)
185  s->prev_smp[c] = fabs(buf[index + c - channels]);
186  }
187 
188  for (n = 0; n < nb_samples; n++) {
189  for (c = 0; c < channels; c++) {
190  double this, next, max_peak;
191 
192  this = fabs(buf[(index + c) < s->limiter_buf_size ? (index + c) : (index + c - s->limiter_buf_size)]);
193  next = fabs(buf[(index + c + channels) < s->limiter_buf_size ? (index + c + channels) : (index + c + channels - s->limiter_buf_size)]);
194 
195  if ((s->prev_smp[c] <= this) && (next <= this) && (this > ceiling) && (n > 0)) {
196  int detected;
197 
198  detected = 1;
199  for (i = 2; i < 12; i++) {
200  next = fabs(buf[(index + c + (i * channels)) < s->limiter_buf_size ? (index + c + (i * channels)) : (index + c + (i * channels) - s->limiter_buf_size)]);
201  if (next > this) {
202  detected = 0;
203  break;
204  }
205  }
206 
207  if (!detected)
208  continue;
209 
210  for (c = 0; c < channels; c++) {
211  if (c == 0 || fabs(buf[index + c]) > max_peak)
212  max_peak = fabs(buf[index + c]);
213 
214  s->prev_smp[c] = fabs(buf[(index + c) < s->limiter_buf_size ? (index + c) : (index + c - s->limiter_buf_size)]);
215  }
216 
217  *peak_delta = n;
218  s->peak_index = index;
219  *peak_value = max_peak;
220  return;
221  }
222 
223  s->prev_smp[c] = this;
224  }
225 
226  index += channels;
227  if (index >= s->limiter_buf_size)
228  index -= s->limiter_buf_size;
229  }
230 }
231 
232 static void true_peak_limiter(LoudNormContext *s, double *out, int nb_samples, int channels)
233 {
234  int n, c, index, peak_delta, smp_cnt;
235  double ceiling, peak_value;
236  double *buf;
237 
238  buf = s->limiter_buf;
239  ceiling = s->target_tp;
240  index = s->limiter_buf_index;
241  smp_cnt = 0;
242 
243  if (s->frame_type == FIRST_FRAME) {
244  double max;
245 
246  max = 0.;
247  for (n = 0; n < 1920; n++) {
248  for (c = 0; c < channels; c++) {
249  max = fabs(buf[c]) > max ? fabs(buf[c]) : max;
250  }
251  buf += channels;
252  }
253 
254  if (max > ceiling) {
255  s->gain_reduction[1] = ceiling / max;
256  s->limiter_state = SUSTAIN;
257  buf = s->limiter_buf;
258 
259  for (n = 0; n < 1920; n++) {
260  for (c = 0; c < channels; c++) {
261  double env;
262  env = s->gain_reduction[1];
263  buf[c] *= env;
264  }
265  buf += channels;
266  }
267  }
268 
269  buf = s->limiter_buf;
270  }
271 
272  do {
273 
274  switch(s->limiter_state) {
275  case OUT:
276  detect_peak(s, smp_cnt, nb_samples - smp_cnt, channels, &peak_delta, &peak_value);
277  if (peak_delta != -1) {
278  s->env_cnt = 0;
279  smp_cnt += (peak_delta - s->attack_length);
280  s->gain_reduction[0] = 1.;
281  s->gain_reduction[1] = ceiling / peak_value;
282  s->limiter_state = ATTACK;
283 
284  s->env_index = s->peak_index - (s->attack_length * channels);
285  if (s->env_index < 0)
286  s->env_index += s->limiter_buf_size;
287 
288  s->env_index += (s->env_cnt * channels);
289  if (s->env_index > s->limiter_buf_size)
290  s->env_index -= s->limiter_buf_size;
291 
292  } else {
293  smp_cnt = nb_samples;
294  }
295  break;
296 
297  case ATTACK:
298  for (; s->env_cnt < s->attack_length; s->env_cnt++) {
299  for (c = 0; c < channels; c++) {
300  double env;
301  env = s->gain_reduction[0] - ((double) s->env_cnt / (s->attack_length - 1) * (s->gain_reduction[0] - s->gain_reduction[1]));
302  buf[s->env_index + c] *= env;
303  }
304 
305  s->env_index += channels;
306  if (s->env_index >= s->limiter_buf_size)
307  s->env_index -= s->limiter_buf_size;
308 
309  smp_cnt++;
310  if (smp_cnt >= nb_samples) {
311  s->env_cnt++;
312  break;
313  }
314  }
315 
316  if (smp_cnt < nb_samples) {
317  s->env_cnt = 0;
318  s->attack_length = 1920;
319  s->limiter_state = SUSTAIN;
320  }
321  break;
322 
323  case SUSTAIN:
324  detect_peak(s, smp_cnt, nb_samples, channels, &peak_delta, &peak_value);
325  if (peak_delta == -1) {
326  s->limiter_state = RELEASE;
327  s->gain_reduction[0] = s->gain_reduction[1];
328  s->gain_reduction[1] = 1.;
329  s->env_cnt = 0;
330  break;
331  } else {
332  double gain_reduction;
333  gain_reduction = ceiling / peak_value;
334 
335  if (gain_reduction < s->gain_reduction[1]) {
336  s->limiter_state = ATTACK;
337 
338  s->attack_length = peak_delta;
339  if (s->attack_length <= 1)
340  s->attack_length = 2;
341 
342  s->gain_reduction[0] = s->gain_reduction[1];
343  s->gain_reduction[1] = gain_reduction;
344  s->env_cnt = 0;
345  break;
346  }
347 
348  for (s->env_cnt = 0; s->env_cnt < peak_delta; s->env_cnt++) {
349  for (c = 0; c < channels; c++) {
350  double env;
351  env = s->gain_reduction[1];
352  buf[s->env_index + c] *= env;
353  }
354 
355  s->env_index += channels;
356  if (s->env_index >= s->limiter_buf_size)
357  s->env_index -= s->limiter_buf_size;
358 
359  smp_cnt++;
360  if (smp_cnt >= nb_samples) {
361  s->env_cnt++;
362  break;
363  }
364  }
365  }
366  break;
367 
368  case RELEASE:
369  for (; s->env_cnt < s->release_length; s->env_cnt++) {
370  for (c = 0; c < channels; c++) {
371  double env;
372  env = s->gain_reduction[0] + (((double) s->env_cnt / (s->release_length - 1)) * (s->gain_reduction[1] - s->gain_reduction[0]));
373  buf[s->env_index + c] *= env;
374  }
375 
376  s->env_index += channels;
377  if (s->env_index >= s->limiter_buf_size)
378  s->env_index -= s->limiter_buf_size;
379 
380  smp_cnt++;
381  if (smp_cnt >= nb_samples) {
382  s->env_cnt++;
383  break;
384  }
385  }
386 
387  if (smp_cnt < nb_samples) {
388  s->env_cnt = 0;
389  s->limiter_state = OUT;
390  }
391 
392  break;
393  }
394 
395  } while (smp_cnt < nb_samples);
396 
397  for (n = 0; n < nb_samples; n++) {
398  for (c = 0; c < channels; c++) {
399  out[c] = buf[index + c];
400  if (fabs(out[c]) > ceiling) {
401  out[c] = ceiling * (out[c] < 0 ? -1 : 1);
402  }
403  }
404  out += channels;
405  index += channels;
406  if (index >= s->limiter_buf_size)
407  index -= s->limiter_buf_size;
408  }
409 }
410 
412 {
413  AVFilterContext *ctx = inlink->dst;
414  LoudNormContext *s = ctx->priv;
415  AVFilterLink *outlink = ctx->outputs[0];
416  AVFrame *out;
417  const double *src;
418  double *dst;
419  double *buf;
420  double *limiter_buf;
421  int i, n, c, subframe_length, src_index;
422  double gain, gain_next, env_global, env_shortterm,
423  global, shortterm, lra, relative_threshold;
424 
425  if (av_frame_is_writable(in)) {
426  out = in;
427  } else {
428  out = ff_get_audio_buffer(outlink, in->nb_samples);
429  if (!out) {
430  av_frame_free(&in);
431  return AVERROR(ENOMEM);
432  }
434  }
435 
436  out->pts = s->pts[0];
437  memmove(s->pts, &s->pts[1], (FF_ARRAY_ELEMS(s->pts) - 1) * sizeof(s->pts[0]));
438 
439  src = (const double *)in->data[0];
440  dst = (double *)out->data[0];
441  buf = s->buf;
442  limiter_buf = s->limiter_buf;
443 
445 
446  if (s->frame_type == FIRST_FRAME && in->nb_samples < frame_size(inlink->sample_rate, 3000)) {
447  double offset, offset_tp, true_peak;
448 
449  ff_ebur128_loudness_global(s->r128_in, &global);
450  for (c = 0; c < inlink->ch_layout.nb_channels; c++) {
451  double tmp;
452  ff_ebur128_sample_peak(s->r128_in, c, &tmp);
453  if (c == 0 || tmp > true_peak)
454  true_peak = tmp;
455  }
456 
457  offset = pow(10., (s->target_i - global) / 20.);
458  offset_tp = true_peak * offset;
459  s->offset = offset_tp < s->target_tp ? offset : s->target_tp / true_peak;
460  s->frame_type = LINEAR_MODE;
461  }
462 
463  switch (s->frame_type) {
464  case FIRST_FRAME:
465  for (n = 0; n < in->nb_samples; n++) {
466  for (c = 0; c < inlink->ch_layout.nb_channels; c++) {
467  buf[s->buf_index + c] = src[c];
468  }
469  src += inlink->ch_layout.nb_channels;
470  s->buf_index += inlink->ch_layout.nb_channels;
471  }
472 
473  ff_ebur128_loudness_shortterm(s->r128_in, &shortterm);
474 
475  if (shortterm < s->measured_thresh) {
476  s->above_threshold = 0;
477  env_shortterm = shortterm <= -70. ? 0. : s->target_i - s->measured_i;
478  } else {
479  s->above_threshold = 1;
480  env_shortterm = shortterm <= -70. ? 0. : s->target_i - shortterm;
481  }
482 
483  for (n = 0; n < 30; n++)
484  s->delta[n] = pow(10., env_shortterm / 20.);
485  s->prev_delta = s->delta[s->index];
486 
487  s->buf_index =
488  s->limiter_buf_index = 0;
489 
490  for (n = 0; n < (s->limiter_buf_size / inlink->ch_layout.nb_channels); n++) {
491  for (c = 0; c < inlink->ch_layout.nb_channels; c++) {
492  limiter_buf[s->limiter_buf_index + c] = buf[s->buf_index + c] * s->delta[s->index] * s->offset;
493  }
494  s->limiter_buf_index += inlink->ch_layout.nb_channels;
495  if (s->limiter_buf_index >= s->limiter_buf_size)
496  s->limiter_buf_index -= s->limiter_buf_size;
497 
498  s->buf_index += inlink->ch_layout.nb_channels;
499  }
500 
501  subframe_length = frame_size(inlink->sample_rate, 100);
502  true_peak_limiter(s, dst, subframe_length, inlink->ch_layout.nb_channels);
503  ff_ebur128_add_frames_double(s->r128_out, dst, subframe_length);
504 
505  out->nb_samples = subframe_length;
506 
507  s->frame_type = INNER_FRAME;
508  break;
509 
510  case INNER_FRAME:
511  gain = gaussian_filter(s, s->index + 10 < 30 ? s->index + 10 : s->index + 10 - 30);
512  gain_next = gaussian_filter(s, s->index + 11 < 30 ? s->index + 11 : s->index + 11 - 30);
513 
514  for (n = 0; n < in->nb_samples; n++) {
515  for (c = 0; c < inlink->ch_layout.nb_channels; c++) {
516  buf[s->prev_buf_index + c] = src[c];
517  limiter_buf[s->limiter_buf_index + c] = buf[s->buf_index + c] * (gain + (((double) n / in->nb_samples) * (gain_next - gain))) * s->offset;
518  }
519  src += inlink->ch_layout.nb_channels;
520 
521  s->limiter_buf_index += inlink->ch_layout.nb_channels;
522  if (s->limiter_buf_index >= s->limiter_buf_size)
523  s->limiter_buf_index -= s->limiter_buf_size;
524 
525  s->prev_buf_index += inlink->ch_layout.nb_channels;
526  if (s->prev_buf_index >= s->buf_size)
527  s->prev_buf_index -= s->buf_size;
528 
529  s->buf_index += inlink->ch_layout.nb_channels;
530  if (s->buf_index >= s->buf_size)
531  s->buf_index -= s->buf_size;
532  }
533 
534  subframe_length = (frame_size(inlink->sample_rate, 100) - in->nb_samples) * inlink->ch_layout.nb_channels;
535  s->limiter_buf_index = s->limiter_buf_index + subframe_length < s->limiter_buf_size ? s->limiter_buf_index + subframe_length : s->limiter_buf_index + subframe_length - s->limiter_buf_size;
536 
537  true_peak_limiter(s, dst, in->nb_samples, inlink->ch_layout.nb_channels);
538  ff_ebur128_add_frames_double(s->r128_out, dst, in->nb_samples);
539 
540  ff_ebur128_loudness_range(s->r128_in, &lra);
541  ff_ebur128_loudness_global(s->r128_in, &global);
542  ff_ebur128_loudness_shortterm(s->r128_in, &shortterm);
543  ff_ebur128_relative_threshold(s->r128_in, &relative_threshold);
544 
545  if (s->above_threshold == 0) {
546  double shortterm_out;
547 
548  if (shortterm > s->measured_thresh)
549  s->prev_delta *= 1.0058;
550 
551  ff_ebur128_loudness_shortterm(s->r128_out, &shortterm_out);
552  if (shortterm_out >= s->target_i)
553  s->above_threshold = 1;
554  }
555 
556  if (shortterm < relative_threshold || shortterm <= -70. || s->above_threshold == 0) {
557  s->delta[s->index] = s->prev_delta;
558  } else {
559  env_global = fabs(shortterm - global) < (s->target_lra / 2.) ? shortterm - global : (s->target_lra / 2.) * ((shortterm - global) < 0 ? -1 : 1);
560  env_shortterm = s->target_i - shortterm;
561  s->delta[s->index] = pow(10., (env_global + env_shortterm) / 20.);
562  }
563 
564  s->prev_delta = s->delta[s->index];
565  s->index++;
566  if (s->index >= 30)
567  s->index -= 30;
568  s->prev_nb_samples = in->nb_samples;
569  break;
570 
571  case FINAL_FRAME:
572  gain = gaussian_filter(s, s->index + 10 < 30 ? s->index + 10 : s->index + 10 - 30);
573  s->limiter_buf_index = 0;
574  src_index = 0;
575 
576  for (n = 0; n < s->limiter_buf_size / inlink->ch_layout.nb_channels; n++) {
577  for (c = 0; c < inlink->ch_layout.nb_channels; c++) {
578  s->limiter_buf[s->limiter_buf_index + c] = src[src_index + c] * gain * s->offset;
579  }
580  src_index += inlink->ch_layout.nb_channels;
581 
582  s->limiter_buf_index += inlink->ch_layout.nb_channels;
583  if (s->limiter_buf_index >= s->limiter_buf_size)
584  s->limiter_buf_index -= s->limiter_buf_size;
585  }
586 
587  subframe_length = frame_size(inlink->sample_rate, 100);
588  for (i = 0; i < in->nb_samples / subframe_length; i++) {
589  true_peak_limiter(s, dst, subframe_length, inlink->ch_layout.nb_channels);
590 
591  for (n = 0; n < subframe_length; n++) {
592  for (c = 0; c < inlink->ch_layout.nb_channels; c++) {
593  if (src_index < (in->nb_samples * inlink->ch_layout.nb_channels)) {
594  limiter_buf[s->limiter_buf_index + c] = src[src_index + c] * gain * s->offset;
595  } else {
596  limiter_buf[s->limiter_buf_index + c] = 0.;
597  }
598  }
599 
600  if (src_index < (in->nb_samples * inlink->ch_layout.nb_channels))
601  src_index += inlink->ch_layout.nb_channels;
602 
603  s->limiter_buf_index += inlink->ch_layout.nb_channels;
604  if (s->limiter_buf_index >= s->limiter_buf_size)
605  s->limiter_buf_index -= s->limiter_buf_size;
606  }
607 
608  dst += (subframe_length * inlink->ch_layout.nb_channels);
609  }
610 
611  dst = (double *)out->data[0];
612  ff_ebur128_add_frames_double(s->r128_out, dst, in->nb_samples);
613  break;
614 
615  case LINEAR_MODE:
616  for (n = 0; n < in->nb_samples; n++) {
617  for (c = 0; c < inlink->ch_layout.nb_channels; c++) {
618  dst[c] = src[c] * s->offset;
619  }
620  src += inlink->ch_layout.nb_channels;
621  dst += inlink->ch_layout.nb_channels;
622  }
623 
624  dst = (double *)out->data[0];
625  ff_ebur128_add_frames_double(s->r128_out, dst, in->nb_samples);
626  break;
627  }
628 
629  if (in != out)
630  av_frame_free(&in);
631  return ff_filter_frame(outlink, out);
632 }
633 
634 static int flush_frame(AVFilterLink *outlink)
635 {
636  AVFilterContext *ctx = outlink->src;
637  AVFilterLink *inlink = ctx->inputs[0];
638  LoudNormContext *s = ctx->priv;
639  int ret = 0;
640 
641  if (s->frame_type == INNER_FRAME) {
642  double *src;
643  double *buf;
644  int nb_samples, n, c, offset;
645  AVFrame *frame;
646 
647  nb_samples = (s->buf_size / inlink->ch_layout.nb_channels) - s->prev_nb_samples;
648  nb_samples -= (frame_size(inlink->sample_rate, 100) - s->prev_nb_samples);
649 
650  frame = ff_get_audio_buffer(outlink, nb_samples);
651  if (!frame)
652  return AVERROR(ENOMEM);
653  frame->nb_samples = nb_samples;
654 
655  buf = s->buf;
656  src = (double *)frame->data[0];
657 
658  offset = ((s->limiter_buf_size / inlink->ch_layout.nb_channels) - s->prev_nb_samples) * inlink->ch_layout.nb_channels;
659  offset -= (frame_size(inlink->sample_rate, 100) - s->prev_nb_samples) * inlink->ch_layout.nb_channels;
660  s->buf_index = s->buf_index - offset < 0 ? s->buf_index - offset + s->buf_size : s->buf_index - offset;
661 
662  for (n = 0; n < nb_samples; n++) {
663  for (c = 0; c < inlink->ch_layout.nb_channels; c++) {
664  src[c] = buf[s->buf_index + c];
665  }
666  src += inlink->ch_layout.nb_channels;
667  s->buf_index += inlink->ch_layout.nb_channels;
668  if (s->buf_index >= s->buf_size)
669  s->buf_index -= s->buf_size;
670  }
671 
672  s->frame_type = FINAL_FRAME;
674  }
675  return ret;
676 }
677 
679 {
680  AVFilterLink *inlink = ctx->inputs[0];
681  AVFilterLink *outlink = ctx->outputs[0];
682  LoudNormContext *s = ctx->priv;
683  AVFrame *in = NULL;
684  int ret = 0, status;
685  int64_t pts;
686 
688 
689  if (s->frame_type != LINEAR_MODE) {
690  int nb_samples;
691 
692  if (s->frame_type == FIRST_FRAME) {
693  nb_samples = frame_size(inlink->sample_rate, 3000);
694  } else {
695  nb_samples = frame_size(inlink->sample_rate, 100);
696  }
697 
698  ret = ff_inlink_consume_samples(inlink, nb_samples, nb_samples, &in);
699  } else {
701  }
702 
703  if (ret < 0)
704  return ret;
705  if (ret > 0) {
706  if (s->frame_type == FIRST_FRAME) {
707  const int nb_samples = frame_size(inlink->sample_rate, 100);
708 
709  for (int i = 0; i < FF_ARRAY_ELEMS(s->pts); i++)
710  s->pts[i] = in->pts + i * nb_samples;
711  } else if (s->frame_type == LINEAR_MODE) {
712  s->pts[0] = in->pts;
713  } else {
714  s->pts[FF_ARRAY_ELEMS(s->pts) - 1] = in->pts;
715  }
716  ret = filter_frame(inlink, in);
717  }
718  if (ret < 0)
719  return ret;
720 
722  ff_outlink_set_status(outlink, status, pts);
723  return flush_frame(outlink);
724  }
725 
727 
728  return FFERROR_NOT_READY;
729 }
730 
732 {
733  LoudNormContext *s = ctx->priv;
734  static const int input_srate[] = {192000, -1};
735  static const enum AVSampleFormat sample_fmts[] = {
738  };
740  if (ret < 0)
741  return ret;
742 
744  if (ret < 0)
745  return ret;
746 
747  if (s->frame_type == LINEAR_MODE) {
749  } else {
750  return ff_set_common_samplerates_from_list(ctx, input_srate);
751  }
752 }
753 
755 {
756  AVFilterContext *ctx = inlink->dst;
757  LoudNormContext *s = ctx->priv;
758 
759  s->r128_in = ff_ebur128_init(inlink->ch_layout.nb_channels, inlink->sample_rate, 0, FF_EBUR128_MODE_I | FF_EBUR128_MODE_S | FF_EBUR128_MODE_LRA | FF_EBUR128_MODE_SAMPLE_PEAK);
760  if (!s->r128_in)
761  return AVERROR(ENOMEM);
762 
763  s->r128_out = ff_ebur128_init(inlink->ch_layout.nb_channels, inlink->sample_rate, 0, FF_EBUR128_MODE_I | FF_EBUR128_MODE_S | FF_EBUR128_MODE_LRA | FF_EBUR128_MODE_SAMPLE_PEAK);
764  if (!s->r128_out)
765  return AVERROR(ENOMEM);
766 
767  if (inlink->ch_layout.nb_channels == 1 && s->dual_mono) {
770  }
771 
772  s->buf_size = frame_size(inlink->sample_rate, 3000) * inlink->ch_layout.nb_channels;
773  s->buf = av_malloc_array(s->buf_size, sizeof(*s->buf));
774  if (!s->buf)
775  return AVERROR(ENOMEM);
776 
777  s->limiter_buf_size = frame_size(inlink->sample_rate, 210) * inlink->ch_layout.nb_channels;
778  s->limiter_buf = av_malloc_array(s->buf_size, sizeof(*s->limiter_buf));
779  if (!s->limiter_buf)
780  return AVERROR(ENOMEM);
781 
782  s->prev_smp = av_malloc_array(inlink->ch_layout.nb_channels, sizeof(*s->prev_smp));
783  if (!s->prev_smp)
784  return AVERROR(ENOMEM);
785 
787 
788  s->buf_index =
789  s->prev_buf_index =
790  s->limiter_buf_index = 0;
791  s->channels = inlink->ch_layout.nb_channels;
792  s->index = 1;
793  s->limiter_state = OUT;
794  s->offset = pow(10., s->offset / 20.);
795  s->target_tp = pow(10., s->target_tp / 20.);
796  s->attack_length = frame_size(inlink->sample_rate, 10);
797  s->release_length = frame_size(inlink->sample_rate, 100);
798 
799  return 0;
800 }
801 
803 {
804  LoudNormContext *s = ctx->priv;
805  s->frame_type = FIRST_FRAME;
806 
807  if (s->linear) {
808  double offset, offset_tp;
809  offset = s->target_i - s->measured_i;
810  offset_tp = s->measured_tp + offset;
811 
812  if (s->measured_tp != 99 && s->measured_thresh != -70 && s->measured_lra != 0 && s->measured_i != 0) {
813  if ((offset_tp <= s->target_tp) && (s->measured_lra <= s->target_lra)) {
814  s->frame_type = LINEAR_MODE;
815  s->offset = offset;
816  }
817  }
818  }
819 
820  return 0;
821 }
822 
824 {
825  LoudNormContext *s = ctx->priv;
826  double i_in, i_out, lra_in, lra_out, thresh_in, thresh_out, tp_in, tp_out;
827  int c;
828 
829  if (!s->r128_in || !s->r128_out)
830  goto end;
831 
832  ff_ebur128_loudness_range(s->r128_in, &lra_in);
833  ff_ebur128_loudness_global(s->r128_in, &i_in);
834  ff_ebur128_relative_threshold(s->r128_in, &thresh_in);
835  for (c = 0; c < s->channels; c++) {
836  double tmp;
837  ff_ebur128_sample_peak(s->r128_in, c, &tmp);
838  if ((c == 0) || (tmp > tp_in))
839  tp_in = tmp;
840  }
841 
842  ff_ebur128_loudness_range(s->r128_out, &lra_out);
843  ff_ebur128_loudness_global(s->r128_out, &i_out);
844  ff_ebur128_relative_threshold(s->r128_out, &thresh_out);
845  for (c = 0; c < s->channels; c++) {
846  double tmp;
847  ff_ebur128_sample_peak(s->r128_out, c, &tmp);
848  if ((c == 0) || (tmp > tp_out))
849  tp_out = tmp;
850  }
851 
852  switch(s->print_format) {
853  case NONE:
854  break;
855 
856  case JSON:
858  "\n{\n"
859  "\t\"input_i\" : \"%.2f\",\n"
860  "\t\"input_tp\" : \"%.2f\",\n"
861  "\t\"input_lra\" : \"%.2f\",\n"
862  "\t\"input_thresh\" : \"%.2f\",\n"
863  "\t\"output_i\" : \"%.2f\",\n"
864  "\t\"output_tp\" : \"%+.2f\",\n"
865  "\t\"output_lra\" : \"%.2f\",\n"
866  "\t\"output_thresh\" : \"%.2f\",\n"
867  "\t\"normalization_type\" : \"%s\",\n"
868  "\t\"target_offset\" : \"%.2f\"\n"
869  "}\n",
870  i_in,
871  20. * log10(tp_in),
872  lra_in,
873  thresh_in,
874  i_out,
875  20. * log10(tp_out),
876  lra_out,
877  thresh_out,
878  s->frame_type == LINEAR_MODE ? "linear" : "dynamic",
879  s->target_i - i_out
880  );
881  break;
882 
883  case SUMMARY:
885  "\n"
886  "Input Integrated: %+6.1f LUFS\n"
887  "Input True Peak: %+6.1f dBTP\n"
888  "Input LRA: %6.1f LU\n"
889  "Input Threshold: %+6.1f LUFS\n"
890  "\n"
891  "Output Integrated: %+6.1f LUFS\n"
892  "Output True Peak: %+6.1f dBTP\n"
893  "Output LRA: %6.1f LU\n"
894  "Output Threshold: %+6.1f LUFS\n"
895  "\n"
896  "Normalization Type: %s\n"
897  "Target Offset: %+6.1f LU\n",
898  i_in,
899  20. * log10(tp_in),
900  lra_in,
901  thresh_in,
902  i_out,
903  20. * log10(tp_out),
904  lra_out,
905  thresh_out,
906  s->frame_type == LINEAR_MODE ? "Linear" : "Dynamic",
907  s->target_i - i_out
908  );
909  break;
910  }
911 
912 end:
913  if (s->r128_in)
914  ff_ebur128_destroy(&s->r128_in);
915  if (s->r128_out)
916  ff_ebur128_destroy(&s->r128_out);
917  av_freep(&s->limiter_buf);
918  av_freep(&s->prev_smp);
919  av_freep(&s->buf);
920 }
921 
923  {
924  .name = "default",
925  .type = AVMEDIA_TYPE_AUDIO,
926  .config_props = config_input,
927  },
928 };
929 
931  .name = "loudnorm",
932  .description = NULL_IF_CONFIG_SMALL("EBU R128 loudness normalization"),
933  .priv_size = sizeof(LoudNormContext),
934  .priv_class = &loudnorm_class,
935  .init = init,
936  .activate = activate,
937  .uninit = uninit,
941 };
init
static av_cold int init(AVFilterContext *ctx)
Definition: af_loudnorm.c:802
STATE_NB
@ STATE_NB
Definition: af_loudnorm.c:44
LoudNormContext::pts
int64_t pts[30]
Definition: af_loudnorm.c:90
ff_get_audio_buffer
AVFrame * ff_get_audio_buffer(AVFilterLink *link, int nb_samples)
Request an audio samples buffer with a specific set of permissions.
Definition: audio.c:97
LoudNormContext::weights
double weights[21]
Definition: af_loudnorm.c:74
SUSTAIN
@ SUSTAIN
Definition: af_loudnorm.c:42
AVERROR
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
opt.h
NONE
@ NONE
Definition: af_loudnorm.c:48
uninit
static av_cold void uninit(AVFilterContext *ctx)
Definition: af_loudnorm.c:823
out
FILE * out
Definition: movenc.c:54
ff_filter_frame
int ff_filter_frame(AVFilterLink *link, AVFrame *frame)
Send a frame of data to the next filter.
Definition: avfilter.c:1018
sample_fmts
static enum AVSampleFormat sample_fmts[]
Definition: adpcmenc.c:947
FFERROR_NOT_READY
return FFERROR_NOT_READY
Definition: filter_design.txt:204
frame_size
static int frame_size(int sample_rate, int frame_len_msec)
Definition: af_loudnorm.c:129
int64_t
long long int64_t
Definition: coverity.c:34
ff_set_common_samplerates_from_list
int ff_set_common_samplerates_from_list(AVFilterContext *ctx, const int *samplerates)
Equivalent to ff_set_common_samplerates(ctx, ff_make_format_list(samplerates))
Definition: formats.c:815
inlink
The exact code depends on how similar the blocks are and how related they are to the and needs to apply these operations to the correct inlink or outlink if there are several Macros are available to factor that when no extra processing is inlink
Definition: filter_design.txt:212
av_frame_free
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
Definition: frame.c:130
AVFrame
This structure describes decoded (raw) audio or video data.
Definition: frame.h:344
tmp
static uint8_t tmp[11]
Definition: aes_ctr.c:28
AVFrame::pts
int64_t pts
Presentation timestamp in time_base units (time when frame should be shown to user).
Definition: frame.h:456
LoudNormContext::peak_index
int peak_index
Definition: af_loudnorm.c:84
AVOption
AVOption.
Definition: opt.h:346
FILTER_QUERY_FUNC
#define FILTER_QUERY_FUNC(func)
Definition: internal.h:159
LoudNormContext::prev_smp
double * prev_smp
Definition: af_loudnorm.c:80
linear
static int linear(InterplayACMContext *s, unsigned ind, unsigned col)
Definition: interplayacm.c:134
ff_set_common_all_samplerates
int ff_set_common_all_samplerates(AVFilterContext *ctx)
Equivalent to ff_set_common_samplerates(ctx, ff_all_samplerates())
Definition: formats.c:821
FF_EBUR128_MODE_I
@ FF_EBUR128_MODE_I
can call ff_ebur128_loudness_global_* and ff_ebur128_relative_threshold
Definition: ebur128.h:89
LoudNormContext::r128_in
FFEBUR128State * r128_in
Definition: af_loudnorm.c:96
max
#define max(a, b)
Definition: cuda_runtime.h:33
LoudNormContext::print_format
enum PrintFormat print_format
Definition: af_loudnorm.c:66
AVFilter::name
const char * name
Filter name.
Definition: avfilter.h:170
c1
static const uint64_t c1
Definition: murmur3.c:52
FF_FILTER_FORWARD_STATUS_BACK
#define FF_FILTER_FORWARD_STATUS_BACK(outlink, inlink)
Forward the status on an output link to an input link.
Definition: filters.h:199
LoudNormContext::prev_nb_samples
int prev_nb_samples
Definition: af_loudnorm.c:93
sample_rate
sample_rate
Definition: ffmpeg_filter.c:409
ff_ebur128_loudness_range
int ff_ebur128_loudness_range(FFEBUR128State *st, double *out)
Get loudness range (LRA) of programme in LU.
Definition: ebur128.c:709
AVFrame::data
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:365
JSON
@ JSON
Definition: af_loudnorm.c:49
formats.h
LoudNormContext::target_tp
double target_tp
Definition: af_loudnorm.c:58
ff_inlink_consume_frame
int ff_inlink_consume_frame(AVFilterLink *link, AVFrame **rframe)
Take a frame from the link's FIFO and update the link's stats.
Definition: avfilter.c:1445
INNER_FRAME
@ INNER_FRAME
Definition: af_loudnorm.c:33
LoudNormContext::above_threshold
int above_threshold
Definition: af_loudnorm.c:92
ff_ebur128_destroy
void ff_ebur128_destroy(FFEBUR128State **st)
Destroy library state.
Definition: ebur128.c:304
ATTACK
@ ATTACK
Definition: af_loudnorm.c:41
pts
static int64_t pts
Definition: transcode_aac.c:643
LoudNormContext::env_index
int env_index
Definition: af_loudnorm.c:85
RELEASE
@ RELEASE
Definition: af_loudnorm.c:43
true_peak_limiter
static void true_peak_limiter(LoudNormContext *s, double *out, int nb_samples, int channels)
Definition: af_loudnorm.c:232
AVFilterPad
A filter pad used for either input or output.
Definition: internal.h:33
FF_EBUR128_DUAL_MONO
@ FF_EBUR128_DUAL_MONO
a channel that is counted twice
Definition: ebur128.h:51
flush_frame
static int flush_frame(AVFilterLink *outlink)
Definition: af_loudnorm.c:634
FLAGS
#define FLAGS
Definition: af_loudnorm.c:101
FF_ARRAY_ELEMS
#define FF_ARRAY_ELEMS(a)
Definition: sinewin_tablegen.c:29
filter_frame
static int filter_frame(AVFilterLink *inlink, AVFrame *in)
Definition: af_loudnorm.c:411
av_cold
#define av_cold
Definition: attributes.h:90
LoudNormContext::index
int index
Definition: af_loudnorm.c:76
ff_outlink_set_status
static void ff_outlink_set_status(AVFilterLink *link, int status, int64_t pts)
Set the status field of a link from the source filter.
Definition: filters.h:189
FF_EBUR128_MODE_LRA
@ FF_EBUR128_MODE_LRA
can call ff_ebur128_loudness_range
Definition: ebur128.h:91
SUMMARY
@ SUMMARY
Definition: af_loudnorm.c:50
s
#define s(width, name)
Definition: cbs_vp9.c:198
ff_ebur128_add_frames_double
void ff_ebur128_add_frames_double(FFEBUR128State *st, const double *src, size_t frames)
Add frames to be processed.
adjust
static int adjust(int x, int size)
Definition: mobiclip.c:512
AV_OPT_TYPE_DOUBLE
@ AV_OPT_TYPE_DOUBLE
Definition: opt.h:237
AVMEDIA_TYPE_AUDIO
@ AVMEDIA_TYPE_AUDIO
Definition: avutil.h:202
ff_set_common_formats_from_list
int ff_set_common_formats_from_list(AVFilterContext *ctx, const int *fmts)
Equivalent to ff_set_common_formats(ctx, ff_make_format_list(fmts))
Definition: formats.c:873
LoudNormContext::measured_tp
double measured_tp
Definition: af_loudnorm.c:61
filters.h
LoudNormContext::limiter_state
enum LimiterState limiter_state
Definition: af_loudnorm.c:83
ctx
AVFormatContext * ctx
Definition: movenc.c:48
channels
channels
Definition: aptx.h:31
LoudNormContext::env_cnt
int env_cnt
Definition: af_loudnorm.c:86
LoudNormContext::prev_delta
double prev_delta
Definition: af_loudnorm.c:75
FILTER_INPUTS
#define FILTER_INPUTS(array)
Definition: internal.h:182
frame
static AVFrame * frame
Definition: demux_decode.c:54
FrameType
FrameType
G723.1 frame types.
Definition: g723_1.h:63
ff_af_loudnorm
const AVFilter ff_af_loudnorm
Definition: af_loudnorm.c:930
AVClass
Describe the class of an AVClass context structure.
Definition: log.h:66
result
and forward the result(frame or status change) to the corresponding input. If nothing is possible
fabs
static __device__ float fabs(float a)
Definition: cuda_runtime.h:182
ff_inlink_consume_samples
int ff_inlink_consume_samples(AVFilterLink *link, unsigned min, unsigned max, AVFrame **rframe)
Take samples from the link's FIFO and update the link's stats.
Definition: avfilter.c:1465
NULL
#define NULL
Definition: coverity.c:32
av_frame_copy_props
int av_frame_copy_props(AVFrame *dst, const AVFrame *src)
Copy only "metadata" fields from src to dst.
Definition: frame.c:679
FRAME_NB
@ FRAME_NB
Definition: af_loudnorm.c:36
LoudNormContext::measured_lra
double measured_lra
Definition: af_loudnorm.c:60
LoudNormContext::delta
double delta[30]
Definition: af_loudnorm.c:73
ff_ebur128_sample_peak
int ff_ebur128_sample_peak(FFEBUR128State *st, unsigned int channel_number, double *out)
Get maximum sample peak of selected channel in float format.
Definition: ebur128.c:714
loudnorm_options
static const AVOption loudnorm_options[]
Definition: af_loudnorm.c:103
ff_audio_default_filterpad
const AVFilterPad ff_audio_default_filterpad[1]
An AVFilterPad array whose only entry has name "default" and is of type AVMEDIA_TYPE_AUDIO.
Definition: audio.c:33
double
double
Definition: af_crystalizer.c:131
LoudNormContext::buf_index
int buf_index
Definition: af_loudnorm.c:70
LoudNormContext::attack_length
int attack_length
Definition: af_loudnorm.c:87
activate
static int activate(AVFilterContext *ctx)
Definition: af_loudnorm.c:678
LoudNormContext::limiter_buf_index
int limiter_buf_index
Definition: af_loudnorm.c:81
ff_set_common_all_channel_counts
int ff_set_common_all_channel_counts(AVFilterContext *ctx)
Equivalent to ff_set_common_channel_layouts(ctx, ff_all_channel_counts())
Definition: formats.c:803
exp
int8_t exp
Definition: eval.c:74
ff_inlink_acknowledge_status
int ff_inlink_acknowledge_status(AVFilterLink *link, int *rstatus, int64_t *rpts)
Test and acknowledge the change of status on the link.
Definition: avfilter.c:1392
index
int index
Definition: gxfenc.c:89
c
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
Definition: undefined.txt:32
LoudNormContext::limiter_buf
double * limiter_buf
Definition: af_loudnorm.c:79
LoudNormContext::release_length
int release_length
Definition: af_loudnorm.c:88
query_formats
static int query_formats(AVFilterContext *ctx)
Definition: af_loudnorm.c:731
LoudNormContext::measured_i
double measured_i
Definition: af_loudnorm.c:59
AVFILTER_DEFINE_CLASS
AVFILTER_DEFINE_CLASS(loudnorm)
NULL_IF_CONFIG_SMALL
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
Definition: internal.h:106
for
for(k=2;k<=8;++k)
Definition: h264pred_template.c:425
ff_ebur128_loudness_shortterm
int ff_ebur128_loudness_shortterm(FFEBUR128State *st, double *out)
Get short-term loudness (last 3s) in LUFS.
Definition: ebur128.c:617
AV_SAMPLE_FMT_NONE
@ AV_SAMPLE_FMT_NONE
Definition: samplefmt.h:56
init_gaussian_filter
static void init_gaussian_filter(LoudNormContext *s)
Definition: af_loudnorm.c:135
av_frame_is_writable
int av_frame_is_writable(AVFrame *frame)
Check if the frame data is writable.
Definition: frame.c:615
PrintFormat
PrintFormat
Definition: af_loudnorm.c:47
FF_EBUR128_MODE_S
@ FF_EBUR128_MODE_S
can call ff_ebur128_loudness_shortterm
Definition: ebur128.h:87
ff_ebur128_init
FFEBUR128State * ff_ebur128_init(unsigned int channels, unsigned long samplerate, unsigned long window, int mode)
Initialize library state.
Definition: ebur128.c:219
LoudNormContext::prev_buf_index
int prev_buf_index
Definition: af_loudnorm.c:71
offset
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf offset
Definition: writing_filters.txt:86
FF_FILTER_FORWARD_WANTED
FF_FILTER_FORWARD_WANTED(outlink, inlink)
OUT
@ OUT
Definition: af_loudnorm.c:40
LoudNormContext::target_i
double target_i
Definition: af_loudnorm.c:56
LoudNormContext
Definition: af_loudnorm.c:54
M_PI
#define M_PI
Definition: mathematics.h:67
AV_LOG_INFO
#define AV_LOG_INFO
Standard information.
Definition: log.h:191
internal.h
LoudNormContext::frame_type
enum FrameType frame_type
Definition: af_loudnorm.c:91
LimiterState
LimiterState
Definition: af_loudnorm.c:39
AVFrame::nb_samples
int nb_samples
number of audio samples (per channel) described by this frame
Definition: frame.h:424
LoudNormContext::measured_thresh
double measured_thresh
Definition: af_loudnorm.c:62
LoudNormContext::buf
double * buf
Definition: af_loudnorm.c:68
LoudNormContext::offset
double offset
Definition: af_loudnorm.c:63
i
#define i(width, name, range_min, range_max)
Definition: cbs_h2645.c:255
LoudNormContext::limiter_buf_size
int limiter_buf_size
Definition: af_loudnorm.c:82
ff_ebur128_set_channel
int ff_ebur128_set_channel(FFEBUR128State *st, unsigned int channel_number, int value)
Set channel type.
Definition: ebur128.c:445
round
static av_always_inline av_const double round(double x)
Definition: libm.h:444
ebur128.h
libebur128 - a library for loudness measurement according to the EBU R128 standard.
av_malloc_array
#define av_malloc_array(a, b)
Definition: tableprint_vlc.h:31
AVSampleFormat
AVSampleFormat
Audio sample formats.
Definition: samplefmt.h:55
FFEBUR128State
Contains information about the state of a loudness measurement.
Definition: ebur128.h:103
AVFilterPad::name
const char * name
Pad name.
Definition: internal.h:39
avfilter_af_loudnorm_inputs
static const AVFilterPad avfilter_af_loudnorm_inputs[]
Definition: af_loudnorm.c:922
AVFilter
Filter definition.
Definition: avfilter.h:166
ret
ret
Definition: filter_design.txt:187
LoudNormContext::channels
int channels
Definition: af_loudnorm.c:94
FINAL_FRAME
@ FINAL_FRAME
Definition: af_loudnorm.c:34
LoudNormContext::buf_size
int buf_size
Definition: af_loudnorm.c:69
c2
static const uint64_t c2
Definition: murmur3.c:53
status
ov_status_e status
Definition: dnn_backend_openvino.c:120
config_input
static int config_input(AVFilterLink *inlink)
Definition: af_loudnorm.c:754
LoudNormContext::gain_reduction
double gain_reduction[2]
Definition: af_loudnorm.c:78
AV_OPT_TYPE_INT
@ AV_OPT_TYPE_INT
Definition: opt.h:235
avfilter.h
PF_NB
@ PF_NB
Definition: af_loudnorm.c:51
AVFilterContext
An instance of a filter.
Definition: avfilter.h:407
LoudNormContext::linear
int linear
Definition: af_loudnorm.c:64
audio.h
LINEAR_MODE
@ LINEAR_MODE
Definition: af_loudnorm.c:35
LoudNormContext::dual_mono
int dual_mono
Definition: af_loudnorm.c:65
OFFSET
#define OFFSET(x)
Definition: af_loudnorm.c:100
ff_ebur128_relative_threshold
int ff_ebur128_relative_threshold(FFEBUR128State *st, double *out)
Get relative threshold in LUFS.
Definition: ebur128.c:580
AV_OPT_TYPE_BOOL
@ AV_OPT_TYPE_BOOL
Definition: opt.h:251
FILTER_OUTPUTS
#define FILTER_OUTPUTS(array)
Definition: internal.h:183
av_freep
#define av_freep(p)
Definition: tableprint_vlc.h:34
src
INIT_CLIP pixel * src
Definition: h264pred_template.c:418
FF_EBUR128_MODE_SAMPLE_PEAK
@ FF_EBUR128_MODE_SAMPLE_PEAK
can call ff_ebur128_sample_peak
Definition: ebur128.h:93
detect_peak
static void detect_peak(LoudNormContext *s, int offset, int nb_samples, int channels, int *peak_delta, double *peak_value)
Definition: af_loudnorm.c:169
av_log
#define av_log(a,...)
Definition: tableprint_vlc.h:27
gaussian_filter
static double gaussian_filter(LoudNormContext *s, int index)
Definition: af_loudnorm.c:157
LoudNormContext::r128_out
FFEBUR128State * r128_out
Definition: af_loudnorm.c:97
AV_SAMPLE_FMT_DBL
@ AV_SAMPLE_FMT_DBL
double
Definition: samplefmt.h:61
FIRST_FRAME
@ FIRST_FRAME
Definition: af_loudnorm.c:32
ff_ebur128_loudness_global
int ff_ebur128_loudness_global(FFEBUR128State *st, double *out)
Get global integrated loudness in LUFS.
Definition: ebur128.c:596
AV_OPT_TYPE_CONST
@ AV_OPT_TYPE_CONST
Definition: opt.h:244
LoudNormContext::target_lra
double target_lra
Definition: af_loudnorm.c:57