Go to the documentation of this file.
27 #include "config_components.h"
46 #define OFFSET(x) offsetof(LUT3DContext, x)
47 #define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
48 #define TFLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_RUNTIME_PARAM
49 #define COMMON_OPTIONS \
50 { "interp", "select interpolation mode", OFFSET(interpolation), AV_OPT_TYPE_INT, {.i64=INTERPOLATE_TETRAHEDRAL}, 0, NB_INTERP_MODE-1, TFLAGS, .unit = "interp_mode" }, \
51 { "nearest", "use values from the nearest defined points", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_NEAREST}, 0, 0, TFLAGS, .unit = "interp_mode" }, \
52 { "trilinear", "interpolate values using the 8 points defining a cube", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_TRILINEAR}, 0, 0, TFLAGS, .unit = "interp_mode" }, \
53 { "tetrahedral", "interpolate values using a tetrahedron", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_TETRAHEDRAL}, 0, 0, TFLAGS, .unit = "interp_mode" }, \
54 { "pyramid", "interpolate values using a pyramid", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_PYRAMID}, 0, 0, TFLAGS, .unit = "interp_mode" }, \
55 { "prism", "interpolate values using a prism", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_PRISM}, 0, 0, TFLAGS, .unit = "interp_mode" }, \
58 #define EXPONENT_MASK 0x7F800000
59 #define MANTISSA_MASK 0x007FFFFF
60 #define SIGN_MASK 0x80000000
82 static inline float lerpf(
float v0,
float v1,
float f)
84 return v0 + (v1 -
v0) *
f;
95 #define NEAR(x) ((int)((x) + .5))
96 #define PREV(x) ((int)(x))
97 #define NEXT(x) (FFMIN((int)(x) + 1, lut3d->lutsize - 1))
105 return lut3d->lut[
NEAR(
s->r) * lut3d->lutsize2 +
NEAR(
s->g) * lut3d->lutsize +
NEAR(
s->b)];
115 const int lutsize2 = lut3d->lutsize2;
116 const int lutsize = lut3d->lutsize;
119 const struct rgbvec d = {
s->r - prev[0],
s->g - prev[1],
s->b - prev[2]};
120 const struct rgbvec c000 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + prev[2]];
121 const struct rgbvec c001 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + next[2]];
122 const struct rgbvec c010 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + prev[2]];
123 const struct rgbvec c011 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + next[2]];
124 const struct rgbvec c100 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + prev[2]];
125 const struct rgbvec c101 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + next[2]];
126 const struct rgbvec c110 = lut3d->lut[next[0] * lutsize2 + next[1] * lutsize + prev[2]];
127 const struct rgbvec c111 = lut3d->lut[next[0] * lutsize2 + next[1] * lutsize + next[2]];
141 const int lutsize2 = lut3d->lutsize2;
142 const int lutsize = lut3d->lutsize;
145 const struct rgbvec d = {
s->r - prev[0],
s->g - prev[1],
s->b - prev[2]};
146 const struct rgbvec c000 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + prev[2]];
147 const struct rgbvec c111 = lut3d->lut[next[0] * lutsize2 + next[1] * lutsize + next[2]];
150 if (
d.g >
d.r &&
d.b >
d.r) {
151 const struct rgbvec c001 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + next[2]];
152 const struct rgbvec c010 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + prev[2]];
153 const struct rgbvec c011 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + next[2]];
155 c.r = c000.
r + (c111.
r - c011.
r) *
d.r + (c010.
r - c000.
r) *
d.g + (c001.
r - c000.
r) *
d.b +
156 (c011.
r - c001.
r - c010.
r + c000.
r) *
d.g *
d.b;
157 c.g = c000.
g + (c111.
g - c011.
g) *
d.r + (c010.
g - c000.
g) *
d.g + (c001.
g - c000.
g) *
d.b +
158 (c011.
g - c001.
g - c010.
g + c000.
g) *
d.g *
d.b;
159 c.b = c000.
b + (c111.
b - c011.
b) *
d.r + (c010.
b - c000.
b) *
d.g + (c001.
b - c000.
b) *
d.b +
160 (c011.
b - c001.
b - c010.
b + c000.
b) *
d.g *
d.b;
161 }
else if (
d.r >
d.g &&
d.b >
d.g) {
162 const struct rgbvec c001 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + next[2]];
163 const struct rgbvec c100 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + prev[2]];
164 const struct rgbvec c101 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + next[2]];
166 c.r = c000.
r + (c100.
r - c000.
r) *
d.r + (c111.
r - c101.
r) *
d.g + (c001.
r - c000.
r) *
d.b +
167 (c101.
r - c001.
r - c100.
r + c000.
r) *
d.r *
d.b;
168 c.g = c000.
g + (c100.
g - c000.
g) *
d.r + (c111.
g - c101.
g) *
d.g + (c001.
g - c000.
g) *
d.b +
169 (c101.
g - c001.
g - c100.
g + c000.
g) *
d.r *
d.b;
170 c.b = c000.
b + (c100.
b - c000.
b) *
d.r + (c111.
b - c101.
b) *
d.g + (c001.
b - c000.
b) *
d.b +
171 (c101.
b - c001.
b - c100.
b + c000.
b) *
d.r *
d.b;
173 const struct rgbvec c010 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + prev[2]];
174 const struct rgbvec c110 = lut3d->lut[next[0] * lutsize2 + next[1] * lutsize + prev[2]];
175 const struct rgbvec c100 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + prev[2]];
177 c.r = c000.
r + (c100.
r - c000.
r) *
d.r + (c010.
r - c000.
r) *
d.g + (c111.
r - c110.
r) *
d.b +
178 (c110.
r - c100.
r - c010.
r + c000.
r) *
d.r *
d.g;
179 c.g = c000.
g + (c100.
g - c000.
g) *
d.r + (c010.
g - c000.
g) *
d.g + (c111.
g - c110.
g) *
d.b +
180 (c110.
g - c100.
g - c010.
g + c000.
g) *
d.r *
d.g;
181 c.b = c000.
b + (c100.
b - c000.
b) *
d.r + (c010.
b - c000.
b) *
d.g + (c111.
b - c110.
b) *
d.b +
182 (c110.
b - c100.
b - c010.
b + c000.
b) *
d.r *
d.g;
191 const int lutsize2 = lut3d->lutsize2;
192 const int lutsize = lut3d->lutsize;
195 const struct rgbvec d = {
s->r - prev[0],
s->g - prev[1],
s->b - prev[2]};
196 const struct rgbvec c000 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + prev[2]];
197 const struct rgbvec c010 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + prev[2]];
198 const struct rgbvec c101 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + next[2]];
199 const struct rgbvec c111 = lut3d->lut[next[0] * lutsize2 + next[1] * lutsize + next[2]];
203 const struct rgbvec c001 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + next[2]];
204 const struct rgbvec c011 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + next[2]];
206 c.r = c000.
r + (c001.
r - c000.
r) *
d.b + (c101.
r - c001.
r) *
d.r + (c010.
r - c000.
r) *
d.g +
207 (c000.
r - c010.
r - c001.
r + c011.
r) *
d.b *
d.g +
208 (c001.
r - c011.
r - c101.
r + c111.
r) *
d.r *
d.g;
209 c.g = c000.
g + (c001.
g - c000.
g) *
d.b + (c101.
g - c001.
g) *
d.r + (c010.
g - c000.
g) *
d.g +
210 (c000.
g - c010.
g - c001.
g + c011.
g) *
d.b *
d.g +
211 (c001.
g - c011.
g - c101.
g + c111.
g) *
d.r *
d.g;
212 c.b = c000.
b + (c001.
b - c000.
b) *
d.b + (c101.
b - c001.
b) *
d.r + (c010.
b - c000.
b) *
d.g +
213 (c000.
b - c010.
b - c001.
b + c011.
b) *
d.b *
d.g +
214 (c001.
b - c011.
b - c101.
b + c111.
b) *
d.r *
d.g;
216 const struct rgbvec c110 = lut3d->lut[next[0] * lutsize2 + next[1] * lutsize + prev[2]];
217 const struct rgbvec c100 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + prev[2]];
219 c.r = c000.
r + (c101.
r - c100.
r) *
d.b + (c100.
r - c000.
r) *
d.r + (c010.
r - c000.
r) *
d.g +
220 (c100.
r - c110.
r - c101.
r + c111.
r) *
d.b *
d.g +
221 (c000.
r - c010.
r - c100.
r + c110.
r) *
d.r *
d.g;
222 c.g = c000.
g + (c101.
g - c100.
g) *
d.b + (c100.
g - c000.
g) *
d.r + (c010.
g - c000.
g) *
d.g +
223 (c100.
g - c110.
g - c101.
g + c111.
g) *
d.b *
d.g +
224 (c000.
g - c010.
g - c100.
g + c110.
g) *
d.r *
d.g;
225 c.b = c000.
b + (c101.
b - c100.
b) *
d.b + (c100.
b - c000.
b) *
d.r + (c010.
b - c000.
b) *
d.g +
226 (c100.
b - c110.
b - c101.
b + c111.
b) *
d.b *
d.g +
227 (c000.
b - c010.
b - c100.
b + c110.
b) *
d.r *
d.g;
240 const int lutsize2 = lut3d->lutsize2;
241 const int lutsize = lut3d->lutsize;
244 const struct rgbvec d = {
s->r - prev[0],
s->g - prev[1],
s->b - prev[2]};
245 const struct rgbvec c000 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + prev[2]];
246 const struct rgbvec c111 = lut3d->lut[next[0] * lutsize2 + next[1] * lutsize + next[2]];
250 const struct rgbvec c100 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + prev[2]];
251 const struct rgbvec c110 = lut3d->lut[next[0] * lutsize2 + next[1] * lutsize + prev[2]];
252 c.r = (1-
d.r) * c000.
r + (
d.r-
d.g) * c100.
r + (
d.g-
d.b) * c110.
r + (
d.b) * c111.
r;
253 c.g = (1-
d.r) * c000.
g + (
d.r-
d.g) * c100.
g + (
d.g-
d.b) * c110.
g + (
d.b) * c111.
g;
254 c.b = (1-
d.r) * c000.
b + (
d.r-
d.g) * c100.
b + (
d.g-
d.b) * c110.
b + (
d.b) * c111.
b;
255 }
else if (
d.r >
d.b) {
256 const struct rgbvec c100 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + prev[2]];
257 const struct rgbvec c101 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + next[2]];
258 c.r = (1-
d.r) * c000.
r + (
d.r-
d.b) * c100.
r + (
d.b-
d.g) * c101.
r + (
d.g) * c111.
r;
259 c.g = (1-
d.r) * c000.
g + (
d.r-
d.b) * c100.
g + (
d.b-
d.g) * c101.
g + (
d.g) * c111.
g;
260 c.b = (1-
d.r) * c000.
b + (
d.r-
d.b) * c100.
b + (
d.b-
d.g) * c101.
b + (
d.g) * c111.
b;
262 const struct rgbvec c001 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + next[2]];
263 const struct rgbvec c101 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + next[2]];
264 c.r = (1-
d.b) * c000.
r + (
d.b-
d.r) * c001.
r + (
d.r-
d.g) * c101.
r + (
d.g) * c111.
r;
265 c.g = (1-
d.b) * c000.
g + (
d.b-
d.r) * c001.
g + (
d.r-
d.g) * c101.
g + (
d.g) * c111.
g;
266 c.b = (1-
d.b) * c000.
b + (
d.b-
d.r) * c001.
b + (
d.r-
d.g) * c101.
b + (
d.g) * c111.
b;
270 const struct rgbvec c001 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + next[2]];
271 const struct rgbvec c011 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + next[2]];
272 c.r = (1-
d.b) * c000.
r + (
d.b-
d.g) * c001.
r + (
d.g-
d.r) * c011.
r + (
d.r) * c111.
r;
273 c.g = (1-
d.b) * c000.
g + (
d.b-
d.g) * c001.
g + (
d.g-
d.r) * c011.
g + (
d.r) * c111.
g;
274 c.b = (1-
d.b) * c000.
b + (
d.b-
d.g) * c001.
b + (
d.g-
d.r) * c011.
b + (
d.r) * c111.
b;
275 }
else if (
d.b >
d.r) {
276 const struct rgbvec c010 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + prev[2]];
277 const struct rgbvec c011 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + next[2]];
278 c.r = (1-
d.g) * c000.
r + (
d.g-
d.b) * c010.
r + (
d.b-
d.r) * c011.
r + (
d.r) * c111.
r;
279 c.g = (1-
d.g) * c000.
g + (
d.g-
d.b) * c010.
g + (
d.b-
d.r) * c011.
g + (
d.r) * c111.
g;
280 c.b = (1-
d.g) * c000.
b + (
d.g-
d.b) * c010.
b + (
d.b-
d.r) * c011.
b + (
d.r) * c111.
b;
282 const struct rgbvec c010 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + prev[2]];
283 const struct rgbvec c110 = lut3d->lut[next[0] * lutsize2 + next[1] * lutsize + prev[2]];
284 c.r = (1-
d.g) * c000.
r + (
d.g-
d.r) * c010.
r + (
d.r-
d.b) * c110.
r + (
d.b) * c111.
r;
285 c.g = (1-
d.g) * c000.
g + (
d.g-
d.r) * c010.
g + (
d.r-
d.b) * c110.
g + (
d.b) * c111.
g;
286 c.b = (1-
d.g) * c000.
b + (
d.g-
d.r) * c010.
b + (
d.r-
d.b) * c110.
b + (
d.b) * c111.
b;
293 int idx,
const float s)
295 const int lut_max = prelut->
size - 1;
296 const float scaled = (
s - prelut->
min[idx]) * prelut->
scale[idx];
297 const float x =
av_clipf(scaled, 0.0
f, lut_max);
298 const int prev =
PREV(x);
299 const int next =
FFMIN((
int)(x) + 1, lut_max);
300 const float p = prelut->
lut[idx][prev];
301 const float n = prelut->
lut[idx][next];
302 const float d = x - (
float)prev;
311 if (prelut->size <= 0)
320 #define DEFINE_INTERP_FUNC_PLANAR(name, nbits, depth) \
321 static int interp_##nbits##_##name##_p##depth(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) \
324 const LUT3DContext *lut3d = ctx->priv; \
325 const Lut3DPreLut *prelut = &lut3d->prelut; \
326 const ThreadData *td = arg; \
327 const AVFrame *in = td->in; \
328 const AVFrame *out = td->out; \
329 const int direct = out == in; \
330 const int slice_start = (in->height * jobnr ) / nb_jobs; \
331 const int slice_end = (in->height * (jobnr+1)) / nb_jobs; \
332 uint8_t *grow = out->data[0] + slice_start * out->linesize[0]; \
333 uint8_t *brow = out->data[1] + slice_start * out->linesize[1]; \
334 uint8_t *rrow = out->data[2] + slice_start * out->linesize[2]; \
335 uint8_t *arow = out->data[3] + slice_start * out->linesize[3]; \
336 const uint8_t *srcgrow = in->data[0] + slice_start * in->linesize[0]; \
337 const uint8_t *srcbrow = in->data[1] + slice_start * in->linesize[1]; \
338 const uint8_t *srcrrow = in->data[2] + slice_start * in->linesize[2]; \
339 const uint8_t *srcarow = in->data[3] + slice_start * in->linesize[3]; \
340 const float lut_max = lut3d->lutsize - 1; \
341 const float scale_f = 1.0f / ((1<<depth) - 1); \
342 const float scale_r = lut3d->scale.r * lut_max; \
343 const float scale_g = lut3d->scale.g * lut_max; \
344 const float scale_b = lut3d->scale.b * lut_max; \
346 for (y = slice_start; y < slice_end; y++) { \
347 uint##nbits##_t *dstg = (uint##nbits##_t *)grow; \
348 uint##nbits##_t *dstb = (uint##nbits##_t *)brow; \
349 uint##nbits##_t *dstr = (uint##nbits##_t *)rrow; \
350 uint##nbits##_t *dsta = (uint##nbits##_t *)arow; \
351 const uint##nbits##_t *srcg = (const uint##nbits##_t *)srcgrow; \
352 const uint##nbits##_t *srcb = (const uint##nbits##_t *)srcbrow; \
353 const uint##nbits##_t *srcr = (const uint##nbits##_t *)srcrrow; \
354 const uint##nbits##_t *srca = (const uint##nbits##_t *)srcarow; \
355 for (x = 0; x < in->width; x++) { \
356 const struct rgbvec rgb = {srcr[x] * scale_f, \
358 srcb[x] * scale_f}; \
359 const struct rgbvec prelut_rgb = apply_prelut(prelut, &rgb); \
360 const struct rgbvec scaled_rgb = {av_clipf(prelut_rgb.r * scale_r, 0, lut_max), \
361 av_clipf(prelut_rgb.g * scale_g, 0, lut_max), \
362 av_clipf(prelut_rgb.b * scale_b, 0, lut_max)}; \
363 struct rgbvec vec = interp_##name(lut3d, &scaled_rgb); \
364 dstr[x] = av_clip_uintp2(vec.r * (float)((1<<depth) - 1), depth); \
365 dstg[x] = av_clip_uintp2(vec.g * (float)((1<<depth) - 1), depth); \
366 dstb[x] = av_clip_uintp2(vec.b * (float)((1<<depth) - 1), depth); \
367 if (!direct && in->linesize[3]) \
370 grow += out->linesize[0]; \
371 brow += out->linesize[1]; \
372 rrow += out->linesize[2]; \
373 arow += out->linesize[3]; \
374 srcgrow += in->linesize[0]; \
375 srcbrow += in->linesize[1]; \
376 srcrrow += in->linesize[2]; \
377 srcarow += in->linesize[3]; \
418 #define DEFINE_INTERP_FUNC_PLANAR_FLOAT(name, depth) \
419 static int interp_##name##_pf##depth(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) \
422 const LUT3DContext *lut3d = ctx->priv; \
423 const Lut3DPreLut *prelut = &lut3d->prelut; \
424 const ThreadData *td = arg; \
425 const AVFrame *in = td->in; \
426 const AVFrame *out = td->out; \
427 const int direct = out == in; \
428 const int slice_start = (in->height * jobnr ) / nb_jobs; \
429 const int slice_end = (in->height * (jobnr+1)) / nb_jobs; \
430 uint8_t *grow = out->data[0] + slice_start * out->linesize[0]; \
431 uint8_t *brow = out->data[1] + slice_start * out->linesize[1]; \
432 uint8_t *rrow = out->data[2] + slice_start * out->linesize[2]; \
433 uint8_t *arow = out->data[3] + slice_start * out->linesize[3]; \
434 const uint8_t *srcgrow = in->data[0] + slice_start * in->linesize[0]; \
435 const uint8_t *srcbrow = in->data[1] + slice_start * in->linesize[1]; \
436 const uint8_t *srcrrow = in->data[2] + slice_start * in->linesize[2]; \
437 const uint8_t *srcarow = in->data[3] + slice_start * in->linesize[3]; \
438 const float lut_max = lut3d->lutsize - 1; \
439 const float scale_r = lut3d->scale.r * lut_max; \
440 const float scale_g = lut3d->scale.g * lut_max; \
441 const float scale_b = lut3d->scale.b * lut_max; \
443 for (y = slice_start; y < slice_end; y++) { \
444 float *dstg = (float *)grow; \
445 float *dstb = (float *)brow; \
446 float *dstr = (float *)rrow; \
447 float *dsta = (float *)arow; \
448 const float *srcg = (const float *)srcgrow; \
449 const float *srcb = (const float *)srcbrow; \
450 const float *srcr = (const float *)srcrrow; \
451 const float *srca = (const float *)srcarow; \
452 for (x = 0; x < in->width; x++) { \
453 const struct rgbvec rgb = {sanitizef(srcr[x]), \
454 sanitizef(srcg[x]), \
455 sanitizef(srcb[x])}; \
456 const struct rgbvec prelut_rgb = apply_prelut(prelut, &rgb); \
457 const struct rgbvec scaled_rgb = {av_clipf(prelut_rgb.r * scale_r, 0, lut_max), \
458 av_clipf(prelut_rgb.g * scale_g, 0, lut_max), \
459 av_clipf(prelut_rgb.b * scale_b, 0, lut_max)}; \
460 struct rgbvec vec = interp_##name(lut3d, &scaled_rgb); \
464 if (!direct && in->linesize[3]) \
467 grow += out->linesize[0]; \
468 brow += out->linesize[1]; \
469 rrow += out->linesize[2]; \
470 arow += out->linesize[3]; \
471 srcgrow += in->linesize[0]; \
472 srcbrow += in->linesize[1]; \
473 srcrrow += in->linesize[2]; \
474 srcarow += in->linesize[3]; \
485 #define DEFINE_INTERP_FUNC(name, nbits) \
486 static int interp_##nbits##_##name(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) \
489 const LUT3DContext *lut3d = ctx->priv; \
490 const Lut3DPreLut *prelut = &lut3d->prelut; \
491 const ThreadData *td = arg; \
492 const AVFrame *in = td->in; \
493 const AVFrame *out = td->out; \
494 const int direct = out == in; \
495 const int step = lut3d->step; \
496 const uint8_t r = lut3d->rgba_map[R]; \
497 const uint8_t g = lut3d->rgba_map[G]; \
498 const uint8_t b = lut3d->rgba_map[B]; \
499 const uint8_t a = lut3d->rgba_map[A]; \
500 const int slice_start = (in->height * jobnr ) / nb_jobs; \
501 const int slice_end = (in->height * (jobnr+1)) / nb_jobs; \
502 uint8_t *dstrow = out->data[0] + slice_start * out->linesize[0]; \
503 const uint8_t *srcrow = in ->data[0] + slice_start * in ->linesize[0]; \
504 const float lut_max = lut3d->lutsize - 1; \
505 const float scale_f = 1.0f / ((1<<nbits) - 1); \
506 const float scale_r = lut3d->scale.r * lut_max; \
507 const float scale_g = lut3d->scale.g * lut_max; \
508 const float scale_b = lut3d->scale.b * lut_max; \
510 for (y = slice_start; y < slice_end; y++) { \
511 uint##nbits##_t *dst = (uint##nbits##_t *)dstrow; \
512 const uint##nbits##_t *src = (const uint##nbits##_t *)srcrow; \
513 for (x = 0; x < in->width * step; x += step) { \
514 const struct rgbvec rgb = {src[x + r] * scale_f, \
515 src[x + g] * scale_f, \
516 src[x + b] * scale_f}; \
517 const struct rgbvec prelut_rgb = apply_prelut(prelut, &rgb); \
518 const struct rgbvec scaled_rgb = {av_clipf(prelut_rgb.r * scale_r, 0, lut_max), \
519 av_clipf(prelut_rgb.g * scale_g, 0, lut_max), \
520 av_clipf(prelut_rgb.b * scale_b, 0, lut_max)}; \
521 struct rgbvec vec = interp_##name(lut3d, &scaled_rgb); \
522 dst[x + r] = av_clip_uint##nbits(vec.r * (float)((1<<nbits) - 1)); \
523 dst[x + g] = av_clip_uint##nbits(vec.g * (float)((1<<nbits) - 1)); \
524 dst[x + b] = av_clip_uint##nbits(vec.b * (float)((1<<nbits) - 1)); \
525 if (!direct && step == 4) \
526 dst[x + a] = src[x + a]; \
528 dstrow += out->linesize[0]; \
529 srcrow += in ->linesize[0]; \
546 #define MAX_LINE_SIZE 512
552 return !*p || *p ==
'#';
563 while ((
c = fgetc(
f)) != EOF) {
574 if ((
c = fgetc(
f)) == EOF)
589 #define NEXT_LINE(loop_cond) do { \
590 if (!fgets(line, sizeof(line), f)) { \
591 av_log(ctx, AV_LOG_ERROR, "Unexpected EOF\n"); \
592 return AVERROR_INVALIDDATA; \
596 #define NEXT_LINE_OR_GOTO(loop_cond, label) do { \
597 if (!fgets(line, sizeof(line), f)) { \
598 av_log(ctx, AV_LOG_ERROR, "Unexpected EOF\n"); \
599 ret = AVERROR_INVALIDDATA; \
608 if (lutsize < 2 || lutsize >
MAX_LEVEL) {
620 for (
i = 0;
i < 3;
i++) {
628 for (
i = 0;
i < 3;
i++) {
633 lut3d->
lutsize2 = lutsize * lutsize;
649 if (!strncmp(
line,
"3DLUTSIZE ", 10)) {
659 for (k = 0; k <
size; k++) {
660 for (j = 0; j <
size; j++) {
663 if (k != 0 || j != 0 ||
i != 0)
678 float min[3] = {0.0, 0.0, 0.0};
679 float max[3] = {1.0, 1.0, 1.0};
682 if (!strncmp(
line,
"LUT_3D_SIZE", 11)) {
691 for (k = 0; k <
size; k++) {
692 for (j = 0; j <
size; j++) {
699 if (!strncmp(
line,
"DOMAIN_", 7)) {
701 if (!strncmp(
line + 7,
"MIN ", 4)) vals =
min;
702 else if (!strncmp(
line + 7,
"MAX ", 4)) vals =
max;
705 if (
av_sscanf(
line + 11,
"%f %f %f", vals, vals + 1, vals + 2) != 3)
710 }
else if (!strncmp(
line,
"TITLE", 5)) {
738 const int size2 = 17 * 17;
739 const float scale = 16*16*16;
748 for (k = 0; k <
size; k++) {
749 for (j = 0; j <
size; j++) {
773 uint8_t rgb_map[3] = {0, 1, 2};
776 if (!strncmp(
line,
"in", 2)) in = strtol(
line + 2,
NULL, 0);
778 else if (!strncmp(
line,
"values", 6)) {
779 const char *p =
line + 6;
780 #define SET_COLOR(id) do { \
781 while (av_isspace(*p)) \
784 case 'r': rgb_map[id] = 0; break; \
785 case 'g': rgb_map[id] = 1; break; \
786 case 'b': rgb_map[id] = 2; break; \
788 while (*p && !av_isspace(*p)) \
798 if (in == -1 ||
out == -1) {
802 if (in < 2 ||
out < 2 ||
818 for (k = 0; k <
size; k++) {
819 for (j = 0; j <
size; j++) {
853 mid = (low + hi) / 2;
864 #define NEXT_FLOAT_OR_GOTO(value, label) \
865 if (!fget_next_word(line, sizeof(line) ,f)) { \
866 ret = AVERROR_INVALIDDATA; \
869 if (av_sscanf(line, "%f", &value) != 1) { \
870 ret = AVERROR_INVALIDDATA; \
878 float in_min[3] = {0.0, 0.0, 0.0};
879 float in_max[3] = {1.0, 1.0, 1.0};
880 float out_min[3] = {0.0, 0.0, 0.0};
881 float out_max[3] = {1.0, 1.0, 1.0};
882 int inside_metadata = 0,
size, size2;
886 int prelut_sizes[3] = {0, 0, 0};
891 if (strncmp(
line,
"CSPLUTV100", 10)) {
898 if (strncmp(
line,
"3D", 2)) {
907 if (!strncmp(
line,
"BEGIN METADATA", 14)) {
911 if (!strncmp(
line,
"END METADATA", 12)) {
915 if (inside_metadata == 0) {
916 int size_r, size_g, size_b;
918 for (
int i = 0;
i < 3;
i++) {
919 int npoints = strtol(
line,
NULL, 0);
930 if (in_prelut[
i] || out_prelut[
i]) {
936 in_prelut[
i] = (
float*)
av_malloc(npoints *
sizeof(
float));
937 out_prelut[
i] = (
float*)
av_malloc(npoints *
sizeof(
float));
938 if (!in_prelut[
i] || !out_prelut[
i]) {
943 prelut_sizes[
i] = npoints;
945 in_max[
i] = -FLT_MAX;
946 out_min[
i] = FLT_MAX;
947 out_max[
i] = -FLT_MAX;
949 for (
int j = 0; j < npoints; j++) {
951 in_min[
i] =
FFMIN(in_min[
i], v);
952 in_max[
i] =
FFMAX(in_max[
i], v);
954 if (j > 0 && v < last) {
962 for (
int j = 0; j < npoints; j++) {
964 out_min[
i] =
FFMIN(out_min[
i], v);
965 out_max[
i] =
FFMAX(out_max[
i], v);
966 out_prelut[
i][j] = v;
969 }
else if (npoints == 2) {
990 if (
av_sscanf(
line,
"%d %d %d", &size_r, &size_g, &size_b) != 3) {
994 if (size_r != size_g || size_r != size_b) {
1003 if (prelut_sizes[0] && prelut_sizes[1] && prelut_sizes[2])
1010 for (
int k = 0; k <
size; k++) {
1011 for (
int j = 0; j <
size; j++) {
1012 for (
int i = 0;
i <
size;
i++) {
1021 vec->
r *= out_max[0] - out_min[0];
1022 vec->
g *= out_max[1] - out_min[1];
1023 vec->
b *= out_max[2] - out_min[2];
1033 for (
int c = 0;
c < 3;
c++) {
1046 a = out_prelut[
c][idx + 0];
1047 b = out_prelut[
c][idx + 1];
1048 mix = x - in_prelut[
c][idx];
1064 for (
int c = 0;
c < 3;
c++) {
1076 const float c = 1. / (
size - 1);
1082 for (k = 0; k <
size; k++) {
1083 for (j = 0; j <
size; j++) {
1116 int depth, is16bit, isfloat,
planar;
1120 depth =
desc->comp[0].depth;
1121 is16bit =
desc->comp[0].depth > 8;
1127 #define SET_FUNC(name) do { \
1128 if (planar && !isfloat) { \
1130 case 8: lut3d->interp = interp_8_##name##_p8; break; \
1131 case 9: lut3d->interp = interp_16_##name##_p9; break; \
1132 case 10: lut3d->interp = interp_16_##name##_p10; break; \
1133 case 12: lut3d->interp = interp_16_##name##_p12; break; \
1134 case 14: lut3d->interp = interp_16_##name##_p14; break; \
1135 case 16: lut3d->interp = interp_16_##name##_p16; break; \
1137 } else if (isfloat) { lut3d->interp = interp_##name##_pf32; \
1138 } else if (is16bit) { lut3d->interp = interp_16_##name; \
1139 } else { lut3d->interp = interp_8_##name; } \
1199 char *res,
int res_len,
int flags)
1210 #if CONFIG_LUT3D_FILTER || CONFIG_HALDCLUT_FILTER
1215 #define COMMON_OPTIONS_OFFSET CONFIG_LUT3D_FILTER
1216 static const AVOption lut3d_haldclut_options[] = {
1217 #if CONFIG_LUT3D_FILTER
1220 #if CONFIG_HALDCLUT_FILTER
1222 {
"first",
"process only first CLUT, ignore rest", 0,
AV_OPT_TYPE_CONST, {.i64=0}, .flags =
TFLAGS, .unit =
"clut" },
1228 #if CONFIG_LUT3D_FILTER
1252 ext = strrchr(lut3d->
file,
'.');
1291 for (
i = 0;
i < 3;
i++) {
1314 .priv_class = &lut3d_class,
1320 #if CONFIG_HALDCLUT_FILTER
1326 const int w = lut3d->clut_width;
1327 const int step = lut3d->clut_step;
1328 const uint8_t *rgba_map = lut3d->clut_rgba_map;
1330 const int level2 = lut3d->
lutsize2;
1332 #define LOAD_CLUT(nbits) do { \
1333 int i, j, k, x = 0, y = 0; \
1335 for (k = 0; k < level; k++) { \
1336 for (j = 0; j < level; j++) { \
1337 for (i = 0; i < level; i++) { \
1338 const uint##nbits##_t *src = (const uint##nbits##_t *) \
1339 (data + y*linesize + x*step); \
1340 struct rgbvec *vec = &lut3d->lut[i * level2 + j * level + k]; \
1341 vec->r = src[rgba_map[0]] / (float)((1<<(nbits)) - 1); \
1342 vec->g = src[rgba_map[1]] / (float)((1<<(nbits)) - 1); \
1343 vec->b = src[rgba_map[2]] / (float)((1<<(nbits)) - 1); \
1353 switch (lut3d->clut_bits) {
1354 case 8: LOAD_CLUT(8);
break;
1355 case 16: LOAD_CLUT(16);
break;
1367 const int w = lut3d->clut_width;
1369 const int level2 = lut3d->
lutsize2;
1371 #define LOAD_CLUT_PLANAR(nbits, depth) do { \
1372 int i, j, k, x = 0, y = 0; \
1374 for (k = 0; k < level; k++) { \
1375 for (j = 0; j < level; j++) { \
1376 for (i = 0; i < level; i++) { \
1377 const uint##nbits##_t *gsrc = (const uint##nbits##_t *) \
1378 (datag + y*glinesize); \
1379 const uint##nbits##_t *bsrc = (const uint##nbits##_t *) \
1380 (datab + y*blinesize); \
1381 const uint##nbits##_t *rsrc = (const uint##nbits##_t *) \
1382 (datar + y*rlinesize); \
1383 struct rgbvec *vec = &lut3d->lut[i * level2 + j * level + k]; \
1384 vec->r = gsrc[x] / (float)((1<<(depth)) - 1); \
1385 vec->g = bsrc[x] / (float)((1<<(depth)) - 1); \
1386 vec->b = rsrc[x] / (float)((1<<(depth)) - 1); \
1396 switch (lut3d->clut_bits) {
1397 case 8: LOAD_CLUT_PLANAR(8, 8);
break;
1398 case 9: LOAD_CLUT_PLANAR(16, 9);
break;
1399 case 10: LOAD_CLUT_PLANAR(16, 10);
break;
1400 case 12: LOAD_CLUT_PLANAR(16, 12);
break;
1401 case 14: LOAD_CLUT_PLANAR(16, 14);
break;
1402 case 16: LOAD_CLUT_PLANAR(16, 16);
break;
1414 const int w = lut3d->clut_width;
1416 const int level2 = lut3d->
lutsize2;
1418 int i, j, k, x = 0, y = 0;
1420 for (k = 0; k <
level; k++) {
1421 for (j = 0; j <
level; j++) {
1423 const float *gsrc = (
const float *)(datag + y*glinesize);
1424 const float *bsrc = (
const float *)(datab + y*blinesize);
1425 const float *rsrc = (
const float *)(datar + y*rlinesize);
1448 outlink->
w =
ctx->inputs[0]->w;
1449 outlink->
h =
ctx->inputs[0]->h;
1471 lut3d->clut_bits =
desc->comp[0].depth;
1495 const int max_clut_level = sqrt(
MAX_LEVEL);
1496 const int max_clut_size = max_clut_level*max_clut_level*max_clut_level;
1498 "(maximum level is %d, or %dx%d CLUT)\n",
1499 max_clut_level, max_clut_size, max_clut_size);
1519 if (lut3d->clut || !lut3d->got_clut) {
1520 if (lut3d->clut_float)
1521 update_clut_float(
ctx->priv, second);
1522 else if (lut3d->clut_planar)
1523 update_clut_planar(
ctx->priv, second);
1525 update_clut_packed(
ctx->priv, second);
1526 lut3d->got_clut = 1;
1536 lut3d->fs.on_event = update_apply_clut;
1548 &lut3d_haldclut_options[COMMON_OPTIONS_OFFSET]);
1558 .config_props = config_clut,
1574 .
preinit = haldclut_framesync_preinit,
1575 .
init = haldclut_init,
1576 .
uninit = haldclut_uninit,
1581 .priv_class = &haldclut_class,
1589 #if CONFIG_LUT1D_FILTER
1591 enum interp_1d_mode {
1592 INTERPOLATE_1D_NEAREST,
1593 INTERPOLATE_1D_LINEAR,
1594 INTERPOLATE_1D_CUBIC,
1595 INTERPOLATE_1D_COSINE,
1596 INTERPOLATE_1D_SPLINE,
1600 #define MAX_1D_LEVEL 65536
1602 typedef struct LUT1DContext {
1607 uint8_t rgba_map[4];
1609 float lut[3][MAX_1D_LEVEL];
1615 #define OFFSET(x) offsetof(LUT1DContext, x)
1617 static void set_identity_matrix_1d(LUT1DContext *lut1d,
int size)
1619 const float c = 1. / (
size - 1);
1622 lut1d->lutsize =
size;
1624 lut1d->lut[0][
i] =
i *
c;
1625 lut1d->lut[1][
i] =
i *
c;
1626 lut1d->lut[2][
i] =
i *
c;
1632 LUT1DContext *lut1d =
ctx->priv;
1634 float in_min[3] = {0.0, 0.0, 0.0};
1635 float in_max[3] = {1.0, 1.0, 1.0};
1636 float out_min[3] = {0.0, 0.0, 0.0};
1637 float out_max[3] = {1.0, 1.0, 1.0};
1638 int inside_metadata = 0,
size;
1641 if (strncmp(
line,
"CSPLUTV100", 10)) {
1647 if (strncmp(
line,
"1D", 2)) {
1655 if (!strncmp(
line,
"BEGIN METADATA", 14)) {
1656 inside_metadata = 1;
1659 if (!strncmp(
line,
"END METADATA", 12)) {
1660 inside_metadata = 0;
1663 if (inside_metadata == 0) {
1664 for (
int i = 0;
i < 3;
i++) {
1665 int npoints = strtol(
line,
NULL, 0);
1683 if (size < 2 || size > MAX_1D_LEVEL) {
1688 lut1d->lutsize =
size;
1690 for (
int i = 0;
i <
size;
i++) {
1692 if (
av_sscanf(
line,
"%f %f %f", &lut1d->lut[0][
i], &lut1d->lut[1][
i], &lut1d->lut[2][
i]) != 3)
1694 lut1d->lut[0][
i] *= out_max[0] - out_min[0];
1695 lut1d->lut[1][
i] *= out_max[1] - out_min[1];
1696 lut1d->lut[2][
i] *= out_max[2] - out_min[2];
1703 lut1d->scale.r =
av_clipf(1. / (in_max[0] - in_min[0]), 0.
f, 1.
f);
1704 lut1d->scale.g =
av_clipf(1. / (in_max[1] - in_min[1]), 0.
f, 1.
f);
1705 lut1d->scale.b =
av_clipf(1. / (in_max[2] - in_min[2]), 0.
f, 1.
f);
1712 LUT1DContext *lut1d =
ctx->priv;
1714 float min[3] = {0.0, 0.0, 0.0};
1715 float max[3] = {1.0, 1.0, 1.0};
1718 if (!strncmp(
line,
"LUT_1D_SIZE", 11)) {
1722 if (size < 2 || size > MAX_1D_LEVEL) {
1726 lut1d->lutsize =
size;
1731 if (!strncmp(
line,
"DOMAIN_", 7)) {
1733 if (!strncmp(
line + 7,
"MIN ", 4)) vals =
min;
1734 else if (!strncmp(
line + 7,
"MAX ", 4)) vals =
max;
1737 if (
av_sscanf(
line + 11,
"%f %f %f", vals, vals + 1, vals + 2) != 3)
1742 }
else if (!strncmp(
line,
"LUT_1D_INPUT_RANGE ", 19)) {
1748 }
else if (!strncmp(
line,
"TITLE", 5)) {
1752 if (
av_sscanf(
line,
"%f %f %f", &lut1d->lut[0][
i], &lut1d->lut[1][
i], &lut1d->lut[2][
i]) != 3)
1766 static const AVOption lut1d_options[] = {
1769 {
"nearest",
"use values from the nearest defined points", 0,
AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_1D_NEAREST}, 0, 0,
TFLAGS, .unit =
"interp_mode" },
1770 {
"linear",
"use values from the linear interpolation", 0,
AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_1D_LINEAR}, 0, 0,
TFLAGS, .unit =
"interp_mode" },
1771 {
"cosine",
"use values from the cosine interpolation", 0,
AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_1D_COSINE}, 0, 0,
TFLAGS, .unit =
"interp_mode" },
1772 {
"cubic",
"use values from the cubic interpolation", 0,
AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_1D_CUBIC}, 0, 0,
TFLAGS, .unit =
"interp_mode" },
1773 {
"spline",
"use values from the spline interpolation", 0,
AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_1D_SPLINE}, 0, 0,
TFLAGS, .unit =
"interp_mode" },
1779 static inline float interp_1d_nearest(
const LUT1DContext *lut1d,
1780 int idx,
const float s)
1782 return lut1d->lut[idx][
NEAR(
s)];
1785 #define NEXT1D(x) (FFMIN((int)(x) + 1, lut1d->lutsize - 1))
1787 static inline float interp_1d_linear(
const LUT1DContext *lut1d,
1788 int idx,
const float s)
1790 const int prev =
PREV(
s);
1791 const int next = NEXT1D(
s);
1792 const float d =
s - prev;
1793 const float p = lut1d->lut[idx][prev];
1794 const float n = lut1d->lut[idx][next];
1799 static inline float interp_1d_cosine(
const LUT1DContext *lut1d,
1800 int idx,
const float s)
1802 const int prev =
PREV(
s);
1803 const int next = NEXT1D(
s);
1804 const float d =
s - prev;
1805 const float p = lut1d->lut[idx][prev];
1806 const float n = lut1d->lut[idx][next];
1807 const float m = (1.f -
cosf(
d *
M_PI)) * .5
f;
1809 return lerpf(p, n, m);
1812 static inline float interp_1d_cubic(
const LUT1DContext *lut1d,
1813 int idx,
const float s)
1815 const int prev =
PREV(
s);
1816 const int next = NEXT1D(
s);
1817 const float mu =
s - prev;
1820 float y0 = lut1d->lut[idx][
FFMAX(prev - 1, 0)];
1821 float y1 = lut1d->lut[idx][prev];
1822 float y2 = lut1d->lut[idx][next];
1823 float y3 = lut1d->lut[idx][
FFMIN(next + 1, lut1d->lutsize - 1)];
1827 a0 = y3 - y2 - y0 + y1;
1832 return a0 * mu * mu2 +
a1 * mu2 +
a2 * mu +
a3;
1835 static inline float interp_1d_spline(
const LUT1DContext *lut1d,
1836 int idx,
const float s)
1838 const int prev =
PREV(
s);
1839 const int next = NEXT1D(
s);
1840 const float x =
s - prev;
1841 float c0,
c1,
c2, c3;
1843 float y0 = lut1d->lut[idx][
FFMAX(prev - 1, 0)];
1844 float y1 = lut1d->lut[idx][prev];
1845 float y2 = lut1d->lut[idx][next];
1846 float y3 = lut1d->lut[idx][
FFMIN(next + 1, lut1d->lutsize - 1)];
1849 c1 = .5f * (y2 - y0);
1850 c2 = y0 - 2.5f * y1 + 2.f * y2 - .5f * y3;
1851 c3 = .5f * (y3 - y0) + 1.5
f * (y1 - y2);
1853 return ((c3 * x +
c2) * x +
c1) * x + c0;
1856 #define DEFINE_INTERP_FUNC_PLANAR_1D(name, nbits, depth) \
1857 static int interp_1d_##nbits##_##name##_p##depth(AVFilterContext *ctx, \
1858 void *arg, int jobnr, \
1862 const LUT1DContext *lut1d = ctx->priv; \
1863 const ThreadData *td = arg; \
1864 const AVFrame *in = td->in; \
1865 const AVFrame *out = td->out; \
1866 const int direct = out == in; \
1867 const int slice_start = (in->height * jobnr ) / nb_jobs; \
1868 const int slice_end = (in->height * (jobnr+1)) / nb_jobs; \
1869 uint8_t *grow = out->data[0] + slice_start * out->linesize[0]; \
1870 uint8_t *brow = out->data[1] + slice_start * out->linesize[1]; \
1871 uint8_t *rrow = out->data[2] + slice_start * out->linesize[2]; \
1872 uint8_t *arow = out->data[3] + slice_start * out->linesize[3]; \
1873 const uint8_t *srcgrow = in->data[0] + slice_start * in->linesize[0]; \
1874 const uint8_t *srcbrow = in->data[1] + slice_start * in->linesize[1]; \
1875 const uint8_t *srcrrow = in->data[2] + slice_start * in->linesize[2]; \
1876 const uint8_t *srcarow = in->data[3] + slice_start * in->linesize[3]; \
1877 const float factor = (1 << depth) - 1; \
1878 const float scale_r = (lut1d->scale.r / factor) * (lut1d->lutsize - 1); \
1879 const float scale_g = (lut1d->scale.g / factor) * (lut1d->lutsize - 1); \
1880 const float scale_b = (lut1d->scale.b / factor) * (lut1d->lutsize - 1); \
1882 for (y = slice_start; y < slice_end; y++) { \
1883 uint##nbits##_t *dstg = (uint##nbits##_t *)grow; \
1884 uint##nbits##_t *dstb = (uint##nbits##_t *)brow; \
1885 uint##nbits##_t *dstr = (uint##nbits##_t *)rrow; \
1886 uint##nbits##_t *dsta = (uint##nbits##_t *)arow; \
1887 const uint##nbits##_t *srcg = (const uint##nbits##_t *)srcgrow; \
1888 const uint##nbits##_t *srcb = (const uint##nbits##_t *)srcbrow; \
1889 const uint##nbits##_t *srcr = (const uint##nbits##_t *)srcrrow; \
1890 const uint##nbits##_t *srca = (const uint##nbits##_t *)srcarow; \
1891 for (x = 0; x < in->width; x++) { \
1892 float r = srcr[x] * scale_r; \
1893 float g = srcg[x] * scale_g; \
1894 float b = srcb[x] * scale_b; \
1895 r = interp_1d_##name(lut1d, 0, r); \
1896 g = interp_1d_##name(lut1d, 1, g); \
1897 b = interp_1d_##name(lut1d, 2, b); \
1898 dstr[x] = av_clip_uintp2(r * factor, depth); \
1899 dstg[x] = av_clip_uintp2(g * factor, depth); \
1900 dstb[x] = av_clip_uintp2(b * factor, depth); \
1901 if (!direct && in->linesize[3]) \
1902 dsta[x] = srca[x]; \
1904 grow += out->linesize[0]; \
1905 brow += out->linesize[1]; \
1906 rrow += out->linesize[2]; \
1907 arow += out->linesize[3]; \
1908 srcgrow += in->linesize[0]; \
1909 srcbrow += in->linesize[1]; \
1910 srcrrow += in->linesize[2]; \
1911 srcarow += in->linesize[3]; \
1916 DEFINE_INTERP_FUNC_PLANAR_1D(nearest, 8, 8)
1917 DEFINE_INTERP_FUNC_PLANAR_1D(
linear, 8, 8)
1918 DEFINE_INTERP_FUNC_PLANAR_1D(cosine, 8, 8)
1919 DEFINE_INTERP_FUNC_PLANAR_1D(cubic, 8, 8)
1920 DEFINE_INTERP_FUNC_PLANAR_1D(spline, 8, 8)
1922 DEFINE_INTERP_FUNC_PLANAR_1D(nearest, 16, 9)
1923 DEFINE_INTERP_FUNC_PLANAR_1D(
linear, 16, 9)
1924 DEFINE_INTERP_FUNC_PLANAR_1D(cosine, 16, 9)
1925 DEFINE_INTERP_FUNC_PLANAR_1D(cubic, 16, 9)
1926 DEFINE_INTERP_FUNC_PLANAR_1D(spline, 16, 9)
1928 DEFINE_INTERP_FUNC_PLANAR_1D(nearest, 16, 10)
1929 DEFINE_INTERP_FUNC_PLANAR_1D(
linear, 16, 10)
1930 DEFINE_INTERP_FUNC_PLANAR_1D(cosine, 16, 10)
1931 DEFINE_INTERP_FUNC_PLANAR_1D(cubic, 16, 10)
1932 DEFINE_INTERP_FUNC_PLANAR_1D(spline, 16, 10)
1934 DEFINE_INTERP_FUNC_PLANAR_1D(nearest, 16, 12)
1935 DEFINE_INTERP_FUNC_PLANAR_1D(
linear, 16, 12)
1936 DEFINE_INTERP_FUNC_PLANAR_1D(cosine, 16, 12)
1937 DEFINE_INTERP_FUNC_PLANAR_1D(cubic, 16, 12)
1938 DEFINE_INTERP_FUNC_PLANAR_1D(spline, 16, 12)
1940 DEFINE_INTERP_FUNC_PLANAR_1D(nearest, 16, 14)
1941 DEFINE_INTERP_FUNC_PLANAR_1D(
linear, 16, 14)
1942 DEFINE_INTERP_FUNC_PLANAR_1D(cosine, 16, 14)
1943 DEFINE_INTERP_FUNC_PLANAR_1D(cubic, 16, 14)
1944 DEFINE_INTERP_FUNC_PLANAR_1D(spline, 16, 14)
1946 DEFINE_INTERP_FUNC_PLANAR_1D(nearest, 16, 16)
1947 DEFINE_INTERP_FUNC_PLANAR_1D(
linear, 16, 16)
1948 DEFINE_INTERP_FUNC_PLANAR_1D(cosine, 16, 16)
1949 DEFINE_INTERP_FUNC_PLANAR_1D(cubic, 16, 16)
1950 DEFINE_INTERP_FUNC_PLANAR_1D(spline, 16, 16)
1952 #define DEFINE_INTERP_FUNC_PLANAR_1D_FLOAT(name, depth) \
1953 static int interp_1d_##name##_pf##depth(AVFilterContext *ctx, \
1954 void *arg, int jobnr, \
1958 const LUT1DContext *lut1d = ctx->priv; \
1959 const ThreadData *td = arg; \
1960 const AVFrame *in = td->in; \
1961 const AVFrame *out = td->out; \
1962 const int direct = out == in; \
1963 const int slice_start = (in->height * jobnr ) / nb_jobs; \
1964 const int slice_end = (in->height * (jobnr+1)) / nb_jobs; \
1965 uint8_t *grow = out->data[0] + slice_start * out->linesize[0]; \
1966 uint8_t *brow = out->data[1] + slice_start * out->linesize[1]; \
1967 uint8_t *rrow = out->data[2] + slice_start * out->linesize[2]; \
1968 uint8_t *arow = out->data[3] + slice_start * out->linesize[3]; \
1969 const uint8_t *srcgrow = in->data[0] + slice_start * in->linesize[0]; \
1970 const uint8_t *srcbrow = in->data[1] + slice_start * in->linesize[1]; \
1971 const uint8_t *srcrrow = in->data[2] + slice_start * in->linesize[2]; \
1972 const uint8_t *srcarow = in->data[3] + slice_start * in->linesize[3]; \
1973 const float lutsize = lut1d->lutsize - 1; \
1974 const float scale_r = lut1d->scale.r * lutsize; \
1975 const float scale_g = lut1d->scale.g * lutsize; \
1976 const float scale_b = lut1d->scale.b * lutsize; \
1978 for (y = slice_start; y < slice_end; y++) { \
1979 float *dstg = (float *)grow; \
1980 float *dstb = (float *)brow; \
1981 float *dstr = (float *)rrow; \
1982 float *dsta = (float *)arow; \
1983 const float *srcg = (const float *)srcgrow; \
1984 const float *srcb = (const float *)srcbrow; \
1985 const float *srcr = (const float *)srcrrow; \
1986 const float *srca = (const float *)srcarow; \
1987 for (x = 0; x < in->width; x++) { \
1988 float r = av_clipf(sanitizef(srcr[x]) * scale_r, 0.0f, lutsize); \
1989 float g = av_clipf(sanitizef(srcg[x]) * scale_g, 0.0f, lutsize); \
1990 float b = av_clipf(sanitizef(srcb[x]) * scale_b, 0.0f, lutsize); \
1991 r = interp_1d_##name(lut1d, 0, r); \
1992 g = interp_1d_##name(lut1d, 1, g); \
1993 b = interp_1d_##name(lut1d, 2, b); \
1997 if (!direct && in->linesize[3]) \
1998 dsta[x] = srca[x]; \
2000 grow += out->linesize[0]; \
2001 brow += out->linesize[1]; \
2002 rrow += out->linesize[2]; \
2003 arow += out->linesize[3]; \
2004 srcgrow += in->linesize[0]; \
2005 srcbrow += in->linesize[1]; \
2006 srcrrow += in->linesize[2]; \
2007 srcarow += in->linesize[3]; \
2012 DEFINE_INTERP_FUNC_PLANAR_1D_FLOAT(nearest, 32)
2013 DEFINE_INTERP_FUNC_PLANAR_1D_FLOAT(
linear, 32)
2014 DEFINE_INTERP_FUNC_PLANAR_1D_FLOAT(cosine, 32)
2015 DEFINE_INTERP_FUNC_PLANAR_1D_FLOAT(cubic, 32)
2016 DEFINE_INTERP_FUNC_PLANAR_1D_FLOAT(spline, 32)
2018 #define DEFINE_INTERP_FUNC_1D(name, nbits) \
2019 static int interp_1d_##nbits##_##name(AVFilterContext *ctx, void *arg, \
2020 int jobnr, int nb_jobs) \
2023 const LUT1DContext *lut1d = ctx->priv; \
2024 const ThreadData *td = arg; \
2025 const AVFrame *in = td->in; \
2026 const AVFrame *out = td->out; \
2027 const int direct = out == in; \
2028 const int step = lut1d->step; \
2029 const uint8_t r = lut1d->rgba_map[R]; \
2030 const uint8_t g = lut1d->rgba_map[G]; \
2031 const uint8_t b = lut1d->rgba_map[B]; \
2032 const uint8_t a = lut1d->rgba_map[A]; \
2033 const int slice_start = (in->height * jobnr ) / nb_jobs; \
2034 const int slice_end = (in->height * (jobnr+1)) / nb_jobs; \
2035 uint8_t *dstrow = out->data[0] + slice_start * out->linesize[0]; \
2036 const uint8_t *srcrow = in ->data[0] + slice_start * in ->linesize[0]; \
2037 const float factor = (1 << nbits) - 1; \
2038 const float scale_r = (lut1d->scale.r / factor) * (lut1d->lutsize - 1); \
2039 const float scale_g = (lut1d->scale.g / factor) * (lut1d->lutsize - 1); \
2040 const float scale_b = (lut1d->scale.b / factor) * (lut1d->lutsize - 1); \
2042 for (y = slice_start; y < slice_end; y++) { \
2043 uint##nbits##_t *dst = (uint##nbits##_t *)dstrow; \
2044 const uint##nbits##_t *src = (const uint##nbits##_t *)srcrow; \
2045 for (x = 0; x < in->width * step; x += step) { \
2046 float rr = src[x + r] * scale_r; \
2047 float gg = src[x + g] * scale_g; \
2048 float bb = src[x + b] * scale_b; \
2049 rr = interp_1d_##name(lut1d, 0, rr); \
2050 gg = interp_1d_##name(lut1d, 1, gg); \
2051 bb = interp_1d_##name(lut1d, 2, bb); \
2052 dst[x + r] = av_clip_uint##nbits(rr * factor); \
2053 dst[x + g] = av_clip_uint##nbits(gg * factor); \
2054 dst[x + b] = av_clip_uint##nbits(bb * factor); \
2055 if (!direct && step == 4) \
2056 dst[x + a] = src[x + a]; \
2058 dstrow += out->linesize[0]; \
2059 srcrow += in ->linesize[0]; \
2064 DEFINE_INTERP_FUNC_1D(nearest, 8)
2065 DEFINE_INTERP_FUNC_1D(
linear, 8)
2066 DEFINE_INTERP_FUNC_1D(cosine, 8)
2067 DEFINE_INTERP_FUNC_1D(cubic, 8)
2068 DEFINE_INTERP_FUNC_1D(spline, 8)
2070 DEFINE_INTERP_FUNC_1D(nearest, 16)
2071 DEFINE_INTERP_FUNC_1D(
linear, 16)
2072 DEFINE_INTERP_FUNC_1D(cosine, 16)
2073 DEFINE_INTERP_FUNC_1D(cubic, 16)
2074 DEFINE_INTERP_FUNC_1D(spline, 16)
2078 int depth, is16bit, isfloat,
planar;
2079 LUT1DContext *lut1d =
inlink->dst->priv;
2082 depth =
desc->comp[0].depth;
2083 is16bit =
desc->comp[0].depth > 8;
2089 #define SET_FUNC_1D(name) do { \
2090 if (planar && !isfloat) { \
2092 case 8: lut1d->interp = interp_1d_8_##name##_p8; break; \
2093 case 9: lut1d->interp = interp_1d_16_##name##_p9; break; \
2094 case 10: lut1d->interp = interp_1d_16_##name##_p10; break; \
2095 case 12: lut1d->interp = interp_1d_16_##name##_p12; break; \
2096 case 14: lut1d->interp = interp_1d_16_##name##_p14; break; \
2097 case 16: lut1d->interp = interp_1d_16_##name##_p16; break; \
2099 } else if (isfloat) { lut1d->interp = interp_1d_##name##_pf32; \
2100 } else if (is16bit) { lut1d->interp = interp_1d_16_##name; \
2101 } else { lut1d->interp = interp_1d_8_##name; } \
2104 switch (lut1d->interpolation) {
2105 case INTERPOLATE_1D_NEAREST: SET_FUNC_1D(nearest);
break;
2106 case INTERPOLATE_1D_LINEAR: SET_FUNC_1D(
linear);
break;
2107 case INTERPOLATE_1D_COSINE: SET_FUNC_1D(cosine);
break;
2108 case INTERPOLATE_1D_CUBIC: SET_FUNC_1D(cubic);
break;
2109 case INTERPOLATE_1D_SPLINE: SET_FUNC_1D(spline);
break;
2122 LUT1DContext *lut1d =
ctx->priv;
2124 lut1d->scale.r = lut1d->scale.g = lut1d->scale.b = 1.f;
2127 set_identity_matrix_1d(lut1d, 32);
2138 ext = strrchr(lut1d->file,
'.');
2149 ret = parse_cinespace_1d(
ctx,
f);
2155 if (!
ret && !lut1d->lutsize) {
2168 LUT1DContext *lut1d =
ctx->priv;
2204 static int lut1d_process_command(
AVFilterContext *
ctx,
const char *cmd,
const char *args,
2205 char *res,
int res_len,
int flags)
2207 LUT1DContext *lut1d =
ctx->priv;
2216 set_identity_matrix_1d(lut1d, 32);
2219 return config_input_1d(
ctx->inputs[0]);
2226 .filter_frame = filter_frame_1d,
2227 .config_props = config_input_1d,
2234 .priv_size =
sizeof(LUT1DContext),
2239 .priv_class = &lut1d_class,
2241 .process_command = lut1d_process_command,
static AVFrame * apply_lut(AVFilterLink *inlink, AVFrame *in)
AVFrame * ff_get_video_buffer(AVFilterLink *link, int w, int h)
Request a picture buffer with a specific set of permissions.
static int config_input(AVFilterLink *inlink)
#define AV_PIX_FMT_GBRAP16
#define DEFINE_INTERP_FUNC_PLANAR_FLOAT(name, depth)
static float lerpf(float v0, float v1, float f)
int ff_framesync_configure(FFFrameSync *fs)
Configure a frame sync structure.
#define AV_LOG_WARNING
Something somehow does not look correct.
AVPixelFormat
Pixel format.
static int mix(int c0, int c1)
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
static int parse_m3d(AVFilterContext *ctx, FILE *f)
void ff_framesync_uninit(FFFrameSync *fs)
Free all memory currently allocated.
#define NEXT_FLOAT_OR_GOTO(value, label)
int ff_filter_frame(AVFilterLink *link, AVFrame *frame)
Send a frame of data to the next filter.
int() avfilter_action_func(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
A function pointer passed to the AVFilterGraph::execute callback to be executed multiple times,...
const AVPixFmtDescriptor * av_pix_fmt_desc_get(enum AVPixelFormat pix_fmt)
static struct rgbvec apply_prelut(const Lut3DPreLut *prelut, const struct rgbvec *s)
static struct rgbvec lerp(const struct rgbvec *v0, const struct rgbvec *v1, float f)
#define FILTER_PIXFMTS_ARRAY(array)
static int parse_dat(AVFilterContext *ctx, FILE *f)
The exact code depends on how similar the blocks are and how related they are to the and needs to apply these operations to the correct inlink or outlink if there are several Macros are available to factor that when no extra processing is inlink
int av_strcasecmp(const char *a, const char *b)
Locale-independent case-insensitive compare.
#define AV_PIX_FMT_FLAG_FLOAT
The pixel format contains IEEE-754 floating point values.
static av_const int av_isspace(int c)
Locale-independent conversion of ASCII isspace.
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
This structure describes decoded (raw) audio or video data.
trying all byte sequences megabyte in length and selecting the best looking sequence will yield cases to try But a word about which is also called distortion Distortion can be quantified by almost any quality measurement one chooses the sum of squared differences is used but more complex methods that consider psychovisual effects can be used as well It makes no difference in this discussion First step
static int skip_line(const char *p)
static int linear(InterplayACMContext *s, unsigned ind, unsigned col)
static struct rgbvec interp_tetrahedral(const LUT3DContext *lut3d, const struct rgbvec *s)
Tetrahedral interpolation.
@ AV_PIX_FMT_BGR24
packed RGB 8:8:8, 24bpp, BGRBGR...
@ AV_PIX_FMT_BGRA
packed BGRA 8:8:8:8, 32bpp, BGRABGRA...
static av_cold int preinit(AVFilterContext *ctx)
static struct rgbvec interp_prism(const LUT3DContext *lut3d, const struct rgbvec *s)
const char * name
Filter name.
#define AVFILTER_DEFINE_CLASS_EXT(name, desc, options)
static int parse_cube(AVFilterContext *ctx, FILE *f)
A link between two filters.
const AVFilter ff_vf_lut3d
static int process_command(AVFilterContext *ctx, const char *cmd, const char *args, char *res, int res_len, int flags)
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
int av_pix_fmt_count_planes(enum AVPixelFormat pix_fmt)
static int parse_3dl(AVFilterContext *ctx, FILE *f)
#define AV_PIX_FMT_GBRP14
@ AV_PIX_FMT_GBRAP
planar GBRA 4:4:4:4 32bpp
#define AV_PIX_FMT_GBRP10
static double val(void *priv, double ch)
uint8_t pi<< 24) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_U8,(uint64_t)((*(const uint8_t *) pi - 0x80U))<< 56) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8,(*(const uint8_t *) pi - 0x80) *(1.0f/(1<< 7))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8,(*(const uint8_t *) pi - 0x80) *(1.0/(1<< 7))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16,(*(const int16_t *) pi >>8)+0x80) CONV_FUNC(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_S16, *(const int16_t *) pi *(1<< 16)) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_S16,(uint64_t)(*(const int16_t *) pi)<< 48) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, *(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, *(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32,(*(const int32_t *) pi >>24)+0x80) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_S32,(uint64_t)(*(const int32_t *) pi)<< 32) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, *(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, *(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S64,(*(const int64_t *) pi >>56)+0x80) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S64, *(const int64_t *) pi *(1.0f/(UINT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S64, *(const int64_t *) pi *(1.0/(UINT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_FLT, llrintf(*(const float *) pi *(UINT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31)))) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_DBL, llrint(*(const double *) pi *(UINT64_C(1)<< 63))) #define FMT_PAIR_FUNC(out, in) static conv_func_type *const fmt_pair_to_conv_functions[AV_SAMPLE_FMT_NB *AV_SAMPLE_FMT_NB]={ FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S64), };static void cpy1(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, len);} static void cpy2(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, 2 *len);} static void cpy4(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, 4 *len);} static void cpy8(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, 8 *len);} AudioConvert *swri_audio_convert_alloc(enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, const int *ch_map, int flags) { AudioConvert *ctx;conv_func_type *f=fmt_pair_to_conv_functions[av_get_packed_sample_fmt(out_fmt)+AV_SAMPLE_FMT_NB *av_get_packed_sample_fmt(in_fmt)];if(!f) return NULL;ctx=av_mallocz(sizeof(*ctx));if(!ctx) return NULL;if(channels==1){ in_fmt=av_get_planar_sample_fmt(in_fmt);out_fmt=av_get_planar_sample_fmt(out_fmt);} ctx->channels=channels;ctx->conv_f=f;ctx->ch_map=ch_map;if(in_fmt==AV_SAMPLE_FMT_U8||in_fmt==AV_SAMPLE_FMT_U8P) memset(ctx->silence, 0x80, sizeof(ctx->silence));if(out_fmt==in_fmt &&!ch_map) { switch(av_get_bytes_per_sample(in_fmt)){ case 1:ctx->simd_f=cpy1;break;case 2:ctx->simd_f=cpy2;break;case 4:ctx->simd_f=cpy4;break;case 8:ctx->simd_f=cpy8;break;} } return ctx;} void swri_audio_convert_free(AudioConvert **ctx) { av_freep(ctx);} int swri_audio_convert(AudioConvert *ctx, AudioData *out, AudioData *in, int len) { int ch;int off=0;const int os=(out->planar ? 1 :out->ch_count) *out->bps;unsigned misaligned=0;av_assert0(ctx->channels==out->ch_count);if(ctx->in_simd_align_mask) { int planes=in->planar ? in->ch_count :1;unsigned m=0;for(ch=0;ch< planes;ch++) m|=(intptr_t) in->ch[ch];misaligned|=m &ctx->in_simd_align_mask;} if(ctx->out_simd_align_mask) { int planes=out->planar ? out->ch_count :1;unsigned m=0;for(ch=0;ch< planes;ch++) m|=(intptr_t) out->ch[ch];misaligned|=m &ctx->out_simd_align_mask;} if(ctx->simd_f &&!ctx->ch_map &&!misaligned){ off=len &~15;av_assert1(off >=0);av_assert1(off<=len);av_assert2(ctx->channels==SWR_CH_MAX||!in->ch[ctx->channels]);if(off >0){ if(out->planar==in->planar){ int planes=out->planar ? out->ch_count :1;for(ch=0;ch< planes;ch++){ ctx->simd_f(out->ch+ch,(const uint8_t **) in->ch+ch, off *(out-> planar
static struct rgbvec interp_trilinear(const LUT3DContext *lut3d, const struct rgbvec *s)
Interpolate using the 8 vertices of a cube.
A filter pad used for either input or output.
static enum AVPixelFormat pix_fmts[]
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
const AVFilterPad ff_video_default_filterpad[1]
An AVFilterPad array whose only entry has name "default" and is of type AVMEDIA_TYPE_VIDEO.
#define AV_PIX_FMT_GBRAP10
#define AV_PIX_FMT_GBRAP12
#define av_assert0(cond)
assert() equivalent, that is always enabled.
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
static char * fget_next_word(char *dst, int max, FILE *f)
#define DEFINE_INTERP_FUNC(name, nbits)
#define FILTER_INPUTS(array)
@ AV_PIX_FMT_RGBA
packed RGBA 8:8:8:8, 32bpp, RGBARGBA...
static int filter_frame(AVFilterLink *inlink, AVFrame *in)
#define AV_PIX_FMT_GBRP16
#define AV_PIX_FMT_RGBA64
int av_sscanf(const char *string, const char *format,...)
See libc sscanf manual for more information.
static float prelut_interp_1d_linear(const Lut3DPreLut *prelut, int idx, const float s)
Describe the class of an AVClass context structure.
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
int av_frame_copy_props(AVFrame *dst, const AVFrame *src)
Copy only "metadata" fields from src to dst.
#define fs(width, name, subs,...)
filter_frame For filters that do not use the activate() callback
#define FRAMESYNC_DEFINE_CLASS_EXT(name, context, field, options)
@ AV_PIX_FMT_BGR0
packed BGR 8:8:8, 32bpp, BGRXBGRX... X=unused/undefined
@ AV_PIX_FMT_ABGR
packed ABGR 8:8:8:8, 32bpp, ABGRABGR...
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
int(* init)(AVBSFContext *ctx)
@ AV_PIX_FMT_RGB24
packed RGB 8:8:8, 24bpp, RGBRGB...
static void scale(int *out, const int *in, const int w, const int h, const int shift)
int ff_framesync_init_dualinput(FFFrameSync *fs, AVFilterContext *parent)
Initialize a frame sync structure for dualinput.
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
int av_get_padded_bits_per_pixel(const AVPixFmtDescriptor *pixdesc)
Return the number of bits per pixel for the pixel format described by pixdesc, including any padding ...
static int config_output(AVFilterLink *outlink)
#define av_err2str(errnum)
Convenience macro, the return value should be used only directly in function arguments but never stan...
#define AV_PIX_FMT_GBRPF32
int av_frame_is_writable(AVFrame *frame)
Check if the frame data is writable.
AVFilterContext * src
source filter
int ff_filter_process_command(AVFilterContext *ctx, const char *cmd, const char *arg, char *res, int res_len, int flags)
Generic processing of user supplied commands that are set in the same way as the filter options.
The reader does not expect b to be semantically here and if the code is changed by maybe adding a a division or other the signedness will almost certainly be mistaken To avoid this confusion a new type was SUINT is the C unsigned type but it holds a signed int to use the same example SUINT a
@ AV_PIX_FMT_RGB0
packed RGB 8:8:8, 32bpp, RGBXRGBX... X=unused/undefined
static int set_identity_matrix(AVFilterContext *ctx, int size)
static int interpolation(DeclickChannel *c, const double *src, int ar_order, double *acoefficients, int *index, int nb_errors, double *auxiliary, double *interpolated)
#define AV_LOG_INFO
Standard information.
#define AVFILTER_DEFINE_CLASS(fname)
#define AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC
Some filters support a generic "enable" expression option that can be used to enable or disable a fil...
@ AV_PIX_FMT_ARGB
packed ARGB 8:8:8:8, 32bpp, ARGBARGB...
static void uninit(AVBSFContext *ctx)
#define AV_PIX_FMT_BGRA64
#define i(width, name, range_min, range_max)
avfilter_action_func * interp
int w
agreed upon image width
#define DEFINE_INTERP_FUNC_PLANAR(name, nbits, depth)
#define AV_PIX_FMT_GBRP12
#define av_malloc_array(a, b)
int ff_filter_get_nb_threads(AVFilterContext *ctx)
Get number of threads for current filter instance.
Used for passing data between threads.
@ INTERPOLATE_TETRAHEDRAL
static struct rgbvec interp_pyramid(const LUT3DContext *lut3d, const struct rgbvec *s)
const char * name
Pad name.
FILE * avpriv_fopen_utf8(const char *path, const char *mode)
Open a file using a UTF-8 filename.
static int parse_cinespace(AVFilterContext *ctx, FILE *f)
static float sanitizef(float f)
@ AV_PIX_FMT_0BGR
packed BGR 8:8:8, 32bpp, XBGRXBGR... X=unused/undefined
static int allocate_3dlut(AVFilterContext *ctx, int lutsize, int prelut)
#define NEXT_LINE_OR_GOTO(loop_cond, label)
const AVFilter ff_vf_haldclut
int h
agreed upon image height
#define AV_PIX_FMT_GBRAPF32
static struct rgbvec interp_nearest(const LUT3DContext *lut3d, const struct rgbvec *s)
Get the nearest defined point.
#define AV_PIX_FMT_FLAG_PLANAR
At least one pixel component is not in the first data plane.
AVRational time_base
Define the time base used by the PTS of the frames/samples which will pass through this link.
#define NEXT_LINE(loop_cond)
@ AV_PIX_FMT_GBRP
planar GBR 4:4:4 24bpp
#define AVFILTER_FLAG_SLICE_THREADS
The filter supports multithreading by splitting frames into multiple parts and processing them concur...
Descriptor that unambiguously describes how the bits of a pixel are stored in the up to 4 data planes...
#define FILTER_OUTPUTS(array)
int ff_fill_rgba_map(uint8_t *rgba_map, enum AVPixelFormat pix_fmt)
void ff_lut3d_init_x86(LUT3DContext *s, const AVPixFmtDescriptor *desc)
#define AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL
Same as AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC, except that the filter will have its filter_frame() c...
#define flags(name, subs,...)
int linesize[AV_NUM_DATA_POINTERS]
For video, a positive or negative value, which is typically indicating the size in bytes of each pict...
@ AV_PIX_FMT_0RGB
packed RGB 8:8:8, 32bpp, XRGBXRGB... X=unused/undefined
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
int ff_framesync_activate(FFFrameSync *fs)
Examine the frames in the filter's input and try to produce output.
const AVFilter ff_vf_lut1d
int ff_framesync_dualinput_get(FFFrameSync *fs, AVFrame **f0, AVFrame **f1)
static av_always_inline int ff_filter_execute(AVFilterContext *ctx, avfilter_action_func *func, void *arg, int *ret, int nb_jobs)
int interpolation
interp_mode
static int nearest_sample_index(float *data, float x, int low, int hi)