FFmpeg
vf_normalize.c
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2017 Richard Ling
3  *
4  * This file is part of FFmpeg.
5  *
6  * FFmpeg is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * FFmpeg is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with FFmpeg; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19  */
20 
21 /*
22  * Normalize RGB video (aka histogram stretching, contrast stretching).
23  * See: https://en.wikipedia.org/wiki/Normalization_(image_processing)
24  *
25  * For each channel of each frame, the filter computes the input range and maps
26  * it linearly to the user-specified output range. The output range defaults
27  * to the full dynamic range from pure black to pure white.
28  *
29  * Naively maximising the dynamic range of each frame of video in isolation
30  * may cause flickering (rapid changes in brightness of static objects in the
31  * scene) when small dark or bright objects enter or leave the scene. This
32  * filter can apply temporal smoothing to the input range to reduce flickering.
33  * Temporal smoothing is similar to the auto-exposure (automatic gain control)
34  * on a video camera, which performs the same function; and, like a video
35  * camera, it may cause a period of over- or under-exposure of the video.
36  *
37  * The filter can normalize the R,G,B channels independently, which may cause
38  * color shifting, or link them together as a single channel, which prevents
39  * color shifting. More precisely, linked normalization preserves hue (as it's
40  * defined in HSV/HSL color spaces) while independent normalization does not.
41  * Independent normalization can be used to remove color casts, such as the
42  * blue cast from underwater video, restoring more natural colors. The filter
43  * can also combine independent and linked normalization in any ratio.
44  *
45  * Finally the overall strength of the filter can be adjusted, from no effect
46  * to full normalization.
47  *
48  * The 5 AVOptions are:
49  * blackpt, Colors which define the output range. The minimum input value
50  * whitept is mapped to the blackpt. The maximum input value is mapped to
51  * the whitept. The defaults are black and white respectively.
52  * Specifying white for blackpt and black for whitept will give
53  * color-inverted, normalized video. Shades of grey can be used
54  * to reduce the dynamic range (contrast). Specifying saturated
55  * colors here can create some interesting effects.
56  *
57  * smoothing The amount of temporal smoothing, expressed in frames (>=0).
58  * the minimum and maximum input values of each channel are
59  * smoothed using a rolling average over the current frame and
60  * that many previous frames of video. Defaults to 0 (no temporal
61  * smoothing).
62  *
63  * independence
64  * Controls the ratio of independent (color shifting) channel
65  * normalization to linked (color preserving) normalization. 0.0
66  * is fully linked, 1.0 is fully independent. Defaults to fully
67  * independent.
68  *
69  * strength Overall strength of the filter. 1.0 is full strength. 0.0 is
70  * a rather expensive no-op. Values in between can give a gentle
71  * boost to low-contrast video without creating an artificial
72  * over-processed look. The default is full strength.
73  */
74 
75 #include "libavutil/intreadwrite.h"
76 #include "libavutil/opt.h"
77 #include "libavutil/pixdesc.h"
78 #include "avfilter.h"
79 #include "drawutils.h"
80 #include "internal.h"
81 #include "video.h"
82 
83 typedef struct NormalizeHistory {
84  uint16_t *history; // History entries.
85  uint64_t history_sum; // Sum of history entries.
87 
88 typedef struct NormalizeLocal {
89  uint16_t in; // Original input byte value for this frame.
90  float smoothed; // Smoothed input value [0,255].
91  float out; // Output value [0,255]
93 
94 typedef struct NormalizeContext {
95  const AVClass *class;
96 
97  // Storage for the corresponding AVOptions
98  uint8_t blackpt[4];
99  uint8_t whitept[4];
102  float strength;
103 
104  uint8_t co[4]; // Offsets to R,G,B,A bytes respectively in each pixel
105  int depth;
106  int sblackpt[4];
107  int swhitept[4];
108  int num_components; // Number of components in the pixel format
109  int step;
110  int history_len; // Number of frames to average; based on smoothing factor
111  int frame_num; // Increments on each frame, starting from 0.
112 
113  // Per-extremum, per-channel history, for temporal smoothing.
114  NormalizeHistory min[3], max[3]; // Min and max for each channel in {R,G,B}.
115  uint16_t *history_mem; // Single allocation for above history entries
116 
117  uint16_t lut[3][65536]; // Lookup table
118 
120  void (*process)(struct NormalizeContext *s, AVFrame *in, AVFrame *out);
122 
123 #define OFFSET(x) offsetof(NormalizeContext, x)
124 #define FLAGS AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
125 #define FLAGSR AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_RUNTIME_PARAM
126 
127 static const AVOption normalize_options[] = {
128  { "blackpt", "output color to which darkest input color is mapped", OFFSET(blackpt), AV_OPT_TYPE_COLOR, { .str = "black" }, 0, 0, FLAGSR },
129  { "whitept", "output color to which brightest input color is mapped", OFFSET(whitept), AV_OPT_TYPE_COLOR, { .str = "white" }, 0, 0, FLAGSR },
130  { "smoothing", "amount of temporal smoothing of the input range, to reduce flicker", OFFSET(smoothing), AV_OPT_TYPE_INT, {.i64=0}, 0, INT_MAX/8, FLAGS },
131  { "independence", "proportion of independent to linked channel normalization", OFFSET(independence), AV_OPT_TYPE_FLOAT, {.dbl=1.0}, 0.0, 1.0, FLAGSR },
132  { "strength", "strength of filter, from no effect to full normalization", OFFSET(strength), AV_OPT_TYPE_FLOAT, {.dbl=1.0}, 0.0, 1.0, FLAGSR },
133  { NULL }
134 };
135 
137 
139 {
140  for (int c = 0; c < 3; c++)
141  min[c].in = max[c].in = in->data[0][s->co[c]];
142  for (int y = 0; y < in->height; y++) {
143  uint8_t *inp = in->data[0] + y * in->linesize[0];
144  for (int x = 0; x < in->width; x++) {
145  for (int c = 0; c < 3; c++) {
146  min[c].in = FFMIN(min[c].in, inp[s->co[c]]);
147  max[c].in = FFMAX(max[c].in, inp[s->co[c]]);
148  }
149  inp += s->step;
150  }
151  }
152 }
153 
155 {
156  for (int y = 0; y < in->height; y++) {
157  uint8_t *inp = in->data[0] + y * in->linesize[0];
158  uint8_t *outp = out->data[0] + y * out->linesize[0];
159  for (int x = 0; x < in->width; x++) {
160  for (int c = 0; c < 3; c++)
161  outp[s->co[c]] = s->lut[c][inp[s->co[c]]];
162  if (s->num_components == 4)
163  // Copy alpha as-is.
164  outp[s->co[3]] = inp[s->co[3]];
165  inp += s->step;
166  outp += s->step;
167  }
168  }
169 }
170 
172 {
173  min[0].in = max[0].in = in->data[2][0];
174  min[1].in = max[1].in = in->data[0][0];
175  min[2].in = max[2].in = in->data[1][0];
176  for (int y = 0; y < in->height; y++) {
177  uint8_t *inrp = in->data[2] + y * in->linesize[2];
178  uint8_t *ingp = in->data[0] + y * in->linesize[0];
179  uint8_t *inbp = in->data[1] + y * in->linesize[1];
180  for (int x = 0; x < in->width; x++) {
181  min[0].in = FFMIN(min[0].in, inrp[x]);
182  max[0].in = FFMAX(max[0].in, inrp[x]);
183  min[1].in = FFMIN(min[1].in, ingp[x]);
184  max[1].in = FFMAX(max[1].in, ingp[x]);
185  min[2].in = FFMIN(min[2].in, inbp[x]);
186  max[2].in = FFMAX(max[2].in, inbp[x]);
187  }
188  }
189 }
190 
192 {
193  for (int y = 0; y < in->height; y++) {
194  uint8_t *inrp = in->data[2] + y * in->linesize[2];
195  uint8_t *ingp = in->data[0] + y * in->linesize[0];
196  uint8_t *inbp = in->data[1] + y * in->linesize[1];
197  uint8_t *inap = in->data[3] + y * in->linesize[3];
198  uint8_t *outrp = out->data[2] + y * out->linesize[2];
199  uint8_t *outgp = out->data[0] + y * out->linesize[0];
200  uint8_t *outbp = out->data[1] + y * out->linesize[1];
201  uint8_t *outap = out->data[3] + y * out->linesize[3];
202  for (int x = 0; x < in->width; x++) {
203  outrp[x] = s->lut[0][inrp[x]];
204  outgp[x] = s->lut[1][ingp[x]];
205  outbp[x] = s->lut[2][inbp[x]];
206  if (s->num_components == 4)
207  outap[x] = inap[x];
208  }
209  }
210 }
211 
213 {
214  for (int c = 0; c < 3; c++)
215  min[c].in = max[c].in = AV_RN16(in->data[0] + 2 * s->co[c]);
216  for (int y = 0; y < in->height; y++) {
217  uint16_t *inp = (uint16_t *)(in->data[0] + y * in->linesize[0]);
218  for (int x = 0; x < in->width; x++) {
219  for (int c = 0; c < 3; c++) {
220  min[c].in = FFMIN(min[c].in, inp[s->co[c]]);
221  max[c].in = FFMAX(max[c].in, inp[s->co[c]]);
222  }
223  inp += s->step;
224  }
225  }
226 }
227 
229 {
230  for (int y = 0; y < in->height; y++) {
231  uint16_t *inp = (uint16_t *)(in->data[0] + y * in->linesize[0]);
232  uint16_t *outp = (uint16_t *)(out->data[0] + y * out->linesize[0]);
233  for (int x = 0; x < in->width; x++) {
234  for (int c = 0; c < 3; c++)
235  outp[s->co[c]] = s->lut[c][inp[s->co[c]]];
236  if (s->num_components == 4)
237  // Copy alpha as-is.
238  outp[s->co[3]] = inp[s->co[3]];
239  inp += s->step;
240  outp += s->step;
241  }
242  }
243 }
244 
246 {
247  min[0].in = max[0].in = AV_RN16(in->data[2]);
248  min[1].in = max[1].in = AV_RN16(in->data[0]);
249  min[2].in = max[2].in = AV_RN16(in->data[1]);
250  for (int y = 0; y < in->height; y++) {
251  uint16_t *inrp = (uint16_t *)(in->data[2] + y * in->linesize[2]);
252  uint16_t *ingp = (uint16_t *)(in->data[0] + y * in->linesize[0]);
253  uint16_t *inbp = (uint16_t *)(in->data[1] + y * in->linesize[1]);
254  for (int x = 0; x < in->width; x++) {
255  min[0].in = FFMIN(min[0].in, inrp[x]);
256  max[0].in = FFMAX(max[0].in, inrp[x]);
257  min[1].in = FFMIN(min[1].in, ingp[x]);
258  max[1].in = FFMAX(max[1].in, ingp[x]);
259  min[2].in = FFMIN(min[2].in, inbp[x]);
260  max[2].in = FFMAX(max[2].in, inbp[x]);
261  }
262  }
263 }
264 
266 {
267  for (int y = 0; y < in->height; y++) {
268  uint16_t *inrp = (uint16_t *)(in->data[2] + y * in->linesize[2]);
269  uint16_t *ingp = (uint16_t *)(in->data[0] + y * in->linesize[0]);
270  uint16_t *inbp = (uint16_t *)(in->data[1] + y * in->linesize[1]);
271  uint16_t *inap = (uint16_t *)(in->data[3] + y * in->linesize[3]);
272  uint16_t *outrp = (uint16_t *)(out->data[2] + y * out->linesize[2]);
273  uint16_t *outgp = (uint16_t *)(out->data[0] + y * out->linesize[0]);
274  uint16_t *outbp = (uint16_t *)(out->data[1] + y * out->linesize[1]);
275  uint16_t *outap = (uint16_t *)(out->data[3] + y * out->linesize[3]);
276  for (int x = 0; x < in->width; x++) {
277  outrp[x] = s->lut[0][inrp[x]];
278  outgp[x] = s->lut[1][ingp[x]];
279  outbp[x] = s->lut[2][inbp[x]];
280  if (s->num_components == 4)
281  outap[x] = inap[x];
282  }
283  }
284 }
285 
286 // This function is the main guts of the filter. Normalizes the input frame
287 // into the output frame. The frames are known to have the same dimensions
288 // and pixel format.
290 {
291  // Per-extremum, per-channel local variables.
292  NormalizeLocal min[3], max[3]; // Min and max for each channel in {R,G,B}.
293 
294  float rgb_min_smoothed; // Min input range for linked normalization
295  float rgb_max_smoothed; // Max input range for linked normalization
296  int c;
297 
298  // First, scan the input frame to find, for each channel, the minimum
299  // (min.in) and maximum (max.in) values present in the channel.
300  s->find_min_max(s, in, min, max);
301 
302  // Next, for each channel, push min.in and max.in into their respective
303  // histories, to determine the min.smoothed and max.smoothed for this frame.
304  {
305  int history_idx = s->frame_num % s->history_len;
306  // Assume the history is not yet full; num_history_vals is the number
307  // of frames received so far including the current frame.
308  int num_history_vals = s->frame_num + 1;
309  if (s->frame_num >= s->history_len) {
310  //The history is full; drop oldest value and cap num_history_vals.
311  for (c = 0; c < 3; c++) {
312  s->min[c].history_sum -= s->min[c].history[history_idx];
313  s->max[c].history_sum -= s->max[c].history[history_idx];
314  }
315  num_history_vals = s->history_len;
316  }
317  // For each extremum, update history_sum and calculate smoothed value
318  // as the rolling average of the history entries.
319  for (c = 0; c < 3; c++) {
320  s->min[c].history_sum += (s->min[c].history[history_idx] = min[c].in);
321  min[c].smoothed = s->min[c].history_sum / (float)num_history_vals;
322  s->max[c].history_sum += (s->max[c].history[history_idx] = max[c].in);
323  max[c].smoothed = s->max[c].history_sum / (float)num_history_vals;
324  }
325  }
326 
327  // Determine the input range for linked normalization. This is simply the
328  // minimum of the per-channel minimums, and the maximum of the per-channel
329  // maximums.
330  rgb_min_smoothed = FFMIN3(min[0].smoothed, min[1].smoothed, min[2].smoothed);
331  rgb_max_smoothed = FFMAX3(max[0].smoothed, max[1].smoothed, max[2].smoothed);
332 
333  // Now, process each channel to determine the input and output range and
334  // build the lookup tables.
335  for (c = 0; c < 3; c++) {
336  int in_val;
337  // Adjust the input range for this channel [min.smoothed,max.smoothed]
338  // by mixing in the correct proportion of the linked normalization
339  // input range [rgb_min_smoothed,rgb_max_smoothed].
340  min[c].smoothed = (min[c].smoothed * s->independence)
341  + (rgb_min_smoothed * (1.0f - s->independence));
342  max[c].smoothed = (max[c].smoothed * s->independence)
343  + (rgb_max_smoothed * (1.0f - s->independence));
344 
345  // Calculate the output range [min.out,max.out] as a ratio of the full-
346  // strength output range [blackpt,whitept] and the original input range
347  // [min.in,max.in], based on the user-specified filter strength.
348  min[c].out = (s->sblackpt[c] * s->strength)
349  + (min[c].in * (1.0f - s->strength));
350  max[c].out = (s->swhitept[c] * s->strength)
351  + (max[c].in * (1.0f - s->strength));
352 
353  // Now, build a lookup table which linearly maps the adjusted input range
354  // [min.smoothed,max.smoothed] to the output range [min.out,max.out].
355  // Perform the linear interpolation for each x:
356  // lut[x] = (int)(float(x - min.smoothed) * scale + max.out + 0.5)
357  // where scale = (max.out - min.out) / (max.smoothed - min.smoothed)
358  if (min[c].smoothed == max[c].smoothed) {
359  // There is no dynamic range to expand. No mapping for this channel.
360  for (in_val = min[c].in; in_val <= max[c].in; in_val++)
361  s->lut[c][in_val] = min[c].out;
362  } else {
363  // We must set lookup values for all values in the original input
364  // range [min.in,max.in]. Since the original input range may be
365  // larger than [min.smoothed,max.smoothed], some output values may
366  // fall outside the [0,255] dynamic range. We need to clamp them.
367  float scale = (max[c].out - min[c].out) / (max[c].smoothed - min[c].smoothed);
368  for (in_val = min[c].in; in_val <= max[c].in; in_val++) {
369  int out_val = (in_val - min[c].smoothed) * scale + min[c].out + 0.5f;
370  out_val = av_clip_uintp2_c(out_val, s->depth);
371  s->lut[c][in_val] = out_val;
372  }
373  }
374  }
375 
376  // Finally, process the pixels of the input frame using the lookup tables.
377  s->process(s, in, out);
378 
379  s->frame_num++;
380 }
381 
382 // Now we define all the functions accessible from the ff_vf_normalize class,
383 // which is ffmpeg's interface to our filter. See doc/filter_design.txt and
384 // doc/writing_filters.txt for descriptions of what these interface functions
385 // are expected to do.
386 
387 // The pixel formats that our filter supports. We should be able to process
388 // any 8-bit RGB formats. 16-bit support might be useful one day.
389 static const enum AVPixelFormat pixel_fmts[] = {
406 };
407 
408 // At this point we know the pixel format used for both input and output. We
409 // can also access the frame rate of the input video and allocate some memory
410 // appropriately
412 {
413  NormalizeContext *s = inlink->dst->priv;
414  // Store offsets to R,G,B,A bytes respectively in each pixel
416  int c, planar, scale;
417 
418  ff_fill_rgba_map(s->co, inlink->format);
419  s->depth = desc->comp[0].depth;
420  scale = 1 << (s->depth - 8);
421  s->num_components = desc->nb_components;
422  s->step = av_get_padded_bits_per_pixel(desc) >> (3 + (s->depth > 8));
423  // Convert smoothing value to history_len (a count of frames to average,
424  // must be at least 1). Currently this is a direct assignment, but the
425  // smoothing value was originally envisaged as a number of seconds. In
426  // future it would be nice to set history_len using a number of seconds,
427  // but VFR video is currently an obstacle to doing so.
428  s->history_len = s->smoothing + 1;
429  // Allocate the history buffers -- there are 6 -- one for each extrema.
430  // s->smoothing is limited to INT_MAX/8, so that (s->history_len * 6)
431  // can't overflow on 32bit causing a too-small allocation.
432  s->history_mem = av_malloc(s->history_len * 6 * sizeof(*s->history_mem));
433  if (s->history_mem == NULL)
434  return AVERROR(ENOMEM);
435 
436  for (c = 0; c < 3; c++) {
437  s->min[c].history = s->history_mem + (c*2) * s->history_len;
438  s->max[c].history = s->history_mem + (c*2+1) * s->history_len;
439  s->sblackpt[c] = scale * s->blackpt[c] + (s->blackpt[c] & (1 << (s->depth - 8)));
440  s->swhitept[c] = scale * s->whitept[c] + (s->whitept[c] & (1 << (s->depth - 8)));
441  }
442 
444 
445  if (s->depth <= 8) {
446  s->find_min_max = planar ? find_min_max_planar : find_min_max;
447  s->process = planar? process_planar : process;
448  } else {
449  s->find_min_max = planar ? find_min_max_planar_16 : find_min_max_16;
450  s->process = planar? process_planar_16 : process_16;
451  }
452 
453  return 0;
454 }
455 
456 // Free any memory allocations here
458 {
459  NormalizeContext *s = ctx->priv;
460 
461  av_freep(&s->history_mem);
462 }
463 
464 // This function is pretty much standard from doc/writing_filters.txt. It
465 // tries to do in-place filtering where possible, only allocating a new output
466 // frame when absolutely necessary.
468 {
469  AVFilterContext *ctx = inlink->dst;
470  AVFilterLink *outlink = ctx->outputs[0];
471  NormalizeContext *s = ctx->priv;
472  AVFrame *out;
473  // Set 'direct' if we can modify the input frame in-place. Otherwise we
474  // need to retrieve a new frame from the output link.
475  int direct = av_frame_is_writable(in) && !ctx->is_disabled;
476 
477  if (direct) {
478  out = in;
479  } else {
480  out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
481  if (!out) {
482  av_frame_free(&in);
483  return AVERROR(ENOMEM);
484  }
486  }
487 
488  // Now we've got the input and output frames (which may be the same frame)
489  // perform the filtering with our custom function.
490  normalize(s, in, out);
491 
492  if (ctx->is_disabled) {
493  av_frame_free(&out);
494  return ff_filter_frame(outlink, in);
495  }
496 
497  if (!direct)
498  av_frame_free(&in);
499 
500  return ff_filter_frame(outlink, out);
501 }
502 
503 static const AVFilterPad inputs[] = {
504  {
505  .name = "default",
506  .type = AVMEDIA_TYPE_VIDEO,
507  .filter_frame = filter_frame,
508  .config_props = config_input,
509  },
510 };
511 
513  .name = "normalize",
514  .description = NULL_IF_CONFIG_SMALL("Normalize RGB video."),
515  .priv_size = sizeof(NormalizeContext),
516  .priv_class = &normalize_class,
517  .uninit = uninit,
522  .process_command = ff_filter_process_command,
523 };
ff_get_video_buffer
AVFrame * ff_get_video_buffer(AVFilterLink *link, int w, int h)
Request a picture buffer with a specific set of permissions.
Definition: video.c:112
NormalizeContext
Definition: vf_normalize.c:94
AV_PIX_FMT_GBRAP16
#define AV_PIX_FMT_GBRAP16
Definition: pixfmt.h:501
process
static void process(NormalizeContext *s, AVFrame *in, AVFrame *out)
Definition: vf_normalize.c:154
NormalizeContext::depth
int depth
Definition: vf_normalize.c:105
AVPixelFormat
AVPixelFormat
Pixel format.
Definition: pixfmt.h:71
AVERROR
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
opt.h
NormalizeContext::lut
uint16_t lut[3][65536]
Definition: vf_normalize.c:117
out
FILE * out
Definition: movenc.c:54
ff_filter_frame
int ff_filter_frame(AVFilterLink *link, AVFrame *frame)
Send a frame of data to the next filter.
Definition: avfilter.c:1018
av_pix_fmt_desc_get
const AVPixFmtDescriptor * av_pix_fmt_desc_get(enum AVPixelFormat pix_fmt)
Definition: pixdesc.c:2962
FILTER_PIXFMTS_ARRAY
#define FILTER_PIXFMTS_ARRAY(array)
Definition: internal.h:162
inlink
The exact code depends on how similar the blocks are and how related they are to the and needs to apply these operations to the correct inlink or outlink if there are several Macros are available to factor that when no extra processing is inlink
Definition: filter_design.txt:212
AV_RN16
#define AV_RN16(p)
Definition: intreadwrite.h:358
av_frame_free
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
Definition: frame.c:130
NormalizeContext::history_len
int history_len
Definition: vf_normalize.c:110
AVFrame
This structure describes decoded (raw) audio or video data.
Definition: frame.h:344
pixdesc.h
av_clip_uintp2_c
static av_always_inline av_const unsigned av_clip_uintp2_c(int a, int p)
Clip a signed integer to an unsigned power of two range.
Definition: common.h:278
AVFrame::width
int width
Definition: frame.h:416
find_min_max_planar_16
static void find_min_max_planar_16(NormalizeContext *s, AVFrame *in, NormalizeLocal min[3], NormalizeLocal max[3])
Definition: vf_normalize.c:245
AVOption
AVOption.
Definition: opt.h:346
NormalizeContext::process
void(* process)(struct NormalizeContext *s, AVFrame *in, AVFrame *out)
Definition: vf_normalize.c:120
NormalizeContext::whitept
uint8_t whitept[4]
Definition: vf_normalize.c:99
normalize_options
static const AVOption normalize_options[]
Definition: vf_normalize.c:127
AV_PIX_FMT_BGR24
@ AV_PIX_FMT_BGR24
packed RGB 8:8:8, 24bpp, BGRBGR...
Definition: pixfmt.h:76
AV_PIX_FMT_BGRA
@ AV_PIX_FMT_BGRA
packed BGRA 8:8:8:8, 32bpp, BGRABGRA...
Definition: pixfmt.h:102
max
#define max(a, b)
Definition: cuda_runtime.h:33
FFMAX
#define FFMAX(a, b)
Definition: macros.h:47
AVFilter::name
const char * name
Filter name.
Definition: avfilter.h:170
find_min_max_planar
static void find_min_max_planar(NormalizeContext *s, AVFrame *in, NormalizeLocal min[3], NormalizeLocal max[3])
Definition: vf_normalize.c:171
video.h
AVFrame::data
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:365
av_malloc
#define av_malloc(s)
Definition: tableprint_vlc.h:30
process_planar
static void process_planar(NormalizeContext *s, AVFrame *in, AVFrame *out)
Definition: vf_normalize.c:191
NormalizeContext::sblackpt
int sblackpt[4]
Definition: vf_normalize.c:106
AV_PIX_FMT_GBRP14
#define AV_PIX_FMT_GBRP14
Definition: pixfmt.h:496
AV_PIX_FMT_GBRAP
@ AV_PIX_FMT_GBRAP
planar GBRA 4:4:4:4 32bpp
Definition: pixfmt.h:212
AV_PIX_FMT_GBRP10
#define AV_PIX_FMT_GBRP10
Definition: pixfmt.h:494
NormalizeContext::max
NormalizeHistory max[3]
Definition: vf_normalize.c:114
planar
uint8_t pi<< 24) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_U8,(uint64_t)((*(const uint8_t *) pi - 0x80U))<< 56) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8,(*(const uint8_t *) pi - 0x80) *(1.0f/(1<< 7))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8,(*(const uint8_t *) pi - 0x80) *(1.0/(1<< 7))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16,(*(const int16_t *) pi >>8)+0x80) CONV_FUNC(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_S16, *(const int16_t *) pi *(1<< 16)) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_S16,(uint64_t)(*(const int16_t *) pi)<< 48) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, *(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, *(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32,(*(const int32_t *) pi >>24)+0x80) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_S32,(uint64_t)(*(const int32_t *) pi)<< 32) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, *(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, *(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S64,(*(const int64_t *) pi >>56)+0x80) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S64, *(const int64_t *) pi *(1.0f/(UINT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S64, *(const int64_t *) pi *(1.0/(UINT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_FLT, llrintf(*(const float *) pi *(UINT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31)))) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_DBL, llrint(*(const double *) pi *(UINT64_C(1)<< 63))) #define FMT_PAIR_FUNC(out, in) static conv_func_type *const fmt_pair_to_conv_functions[AV_SAMPLE_FMT_NB *AV_SAMPLE_FMT_NB]={ FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S64), };static void cpy1(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, len);} static void cpy2(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, 2 *len);} static void cpy4(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, 4 *len);} static void cpy8(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, 8 *len);} AudioConvert *swri_audio_convert_alloc(enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, const int *ch_map, int flags) { AudioConvert *ctx;conv_func_type *f=fmt_pair_to_conv_functions[av_get_packed_sample_fmt(out_fmt)+AV_SAMPLE_FMT_NB *av_get_packed_sample_fmt(in_fmt)];if(!f) return NULL;ctx=av_mallocz(sizeof(*ctx));if(!ctx) return NULL;if(channels==1){ in_fmt=av_get_planar_sample_fmt(in_fmt);out_fmt=av_get_planar_sample_fmt(out_fmt);} ctx->channels=channels;ctx->conv_f=f;ctx->ch_map=ch_map;if(in_fmt==AV_SAMPLE_FMT_U8||in_fmt==AV_SAMPLE_FMT_U8P) memset(ctx->silence, 0x80, sizeof(ctx->silence));if(out_fmt==in_fmt &&!ch_map) { switch(av_get_bytes_per_sample(in_fmt)){ case 1:ctx->simd_f=cpy1;break;case 2:ctx->simd_f=cpy2;break;case 4:ctx->simd_f=cpy4;break;case 8:ctx->simd_f=cpy8;break;} } return ctx;} void swri_audio_convert_free(AudioConvert **ctx) { av_freep(ctx);} int swri_audio_convert(AudioConvert *ctx, AudioData *out, AudioData *in, int len) { int ch;int off=0;const int os=(out->planar ? 1 :out->ch_count) *out->bps;unsigned misaligned=0;av_assert0(ctx->channels==out->ch_count);if(ctx->in_simd_align_mask) { int planes=in->planar ? in->ch_count :1;unsigned m=0;for(ch=0;ch< planes;ch++) m|=(intptr_t) in->ch[ch];misaligned|=m &ctx->in_simd_align_mask;} if(ctx->out_simd_align_mask) { int planes=out->planar ? out->ch_count :1;unsigned m=0;for(ch=0;ch< planes;ch++) m|=(intptr_t) out->ch[ch];misaligned|=m &ctx->out_simd_align_mask;} if(ctx->simd_f &&!ctx->ch_map &&!misaligned){ off=len &~15;av_assert1(off >=0);av_assert1(off<=len);av_assert2(ctx->channels==SWR_CH_MAX||!in->ch[ctx->channels]);if(off >0){ if(out->planar==in->planar){ int planes=out->planar ? out->ch_count :1;for(ch=0;ch< planes;ch++){ ctx->simd_f(out->ch+ch,(const uint8_t **) in->ch+ch, off *(out-> planar
Definition: audioconvert.c:56
NormalizeLocal
Definition: vf_normalize.c:88
AVFilterPad
A filter pad used for either input or output.
Definition: internal.h:33
av_cold
#define av_cold
Definition: attributes.h:90
ff_video_default_filterpad
const AVFilterPad ff_video_default_filterpad[1]
An AVFilterPad array whose only entry has name "default" and is of type AVMEDIA_TYPE_VIDEO.
Definition: video.c:37
AV_PIX_FMT_GBRAP10
#define AV_PIX_FMT_GBRAP10
Definition: pixfmt.h:498
float
float
Definition: af_crystalizer.c:121
intreadwrite.h
s
#define s(width, name)
Definition: cbs_vp9.c:198
AV_PIX_FMT_GBRAP12
#define AV_PIX_FMT_GBRAP12
Definition: pixfmt.h:499
pixel_fmts
static enum AVPixelFormat pixel_fmts[]
Definition: vf_normalize.c:389
NormalizeContext::independence
float independence
Definition: vf_normalize.c:101
ctx
AVFormatContext * ctx
Definition: movenc.c:48
NormalizeContext::history_mem
uint16_t * history_mem
Definition: vf_normalize.c:115
FLAGSR
#define FLAGSR
Definition: vf_normalize.c:125
FILTER_INPUTS
#define FILTER_INPUTS(array)
Definition: internal.h:182
AV_PIX_FMT_RGBA
@ AV_PIX_FMT_RGBA
packed RGBA 8:8:8:8, 32bpp, RGBARGBA...
Definition: pixfmt.h:100
find_min_max
static void find_min_max(NormalizeContext *s, AVFrame *in, NormalizeLocal min[3], NormalizeLocal max[3])
Definition: vf_normalize.c:138
if
if(ret)
Definition: filter_design.txt:179
NormalizeLocal::out
float out
Definition: vf_normalize.c:91
AV_PIX_FMT_GBRP16
#define AV_PIX_FMT_GBRP16
Definition: pixfmt.h:497
AV_PIX_FMT_RGBA64
#define AV_PIX_FMT_RGBA64
Definition: pixfmt.h:468
AVClass
Describe the class of an AVClass context structure.
Definition: log.h:66
AV_PIX_FMT_BGR48
#define AV_PIX_FMT_BGR48
Definition: pixfmt.h:469
NULL
#define NULL
Definition: coverity.c:32
av_frame_copy_props
int av_frame_copy_props(AVFrame *dst, const AVFrame *src)
Copy only "metadata" fields from src to dst.
Definition: frame.c:679
AV_OPT_TYPE_COLOR
@ AV_OPT_TYPE_COLOR
Definition: opt.h:250
inputs
static const AVFilterPad inputs[]
Definition: vf_normalize.c:503
NormalizeContext::step
int step
Definition: vf_normalize.c:109
NormalizeContext::blackpt
uint8_t blackpt[4]
Definition: vf_normalize.c:98
AV_PIX_FMT_BGR0
@ AV_PIX_FMT_BGR0
packed BGR 8:8:8, 32bpp, BGRXBGRX... X=unused/undefined
Definition: pixfmt.h:265
AV_PIX_FMT_GBRP9
#define AV_PIX_FMT_GBRP9
Definition: pixfmt.h:493
NormalizeLocal::in
uint16_t in
Definition: vf_normalize.c:89
AV_PIX_FMT_ABGR
@ AV_PIX_FMT_ABGR
packed ABGR 8:8:8:8, 32bpp, ABGRABGR...
Definition: pixfmt.h:101
c
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
Definition: undefined.txt:32
process_planar_16
static void process_planar_16(NormalizeContext *s, AVFrame *in, AVFrame *out)
Definition: vf_normalize.c:265
OFFSET
#define OFFSET(x)
Definition: vf_normalize.c:123
f
f
Definition: af_crystalizer.c:121
AV_PIX_FMT_RGB24
@ AV_PIX_FMT_RGB24
packed RGB 8:8:8, 24bpp, RGBRGB...
Definition: pixfmt.h:75
scale
static void scale(int *out, const int *in, const int w, const int h, const int shift)
Definition: vvc_intra.c:291
NULL_IF_CONFIG_SMALL
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
Definition: internal.h:106
av_get_padded_bits_per_pixel
int av_get_padded_bits_per_pixel(const AVPixFmtDescriptor *pixdesc)
Return the number of bits per pixel for the pixel format described by pixdesc, including any padding ...
Definition: pixdesc.c:2927
process_16
static void process_16(NormalizeContext *s, AVFrame *in, AVFrame *out)
Definition: vf_normalize.c:228
for
for(k=2;k<=8;++k)
Definition: h264pred_template.c:425
FLAGS
#define FLAGS
Definition: vf_normalize.c:124
NormalizeHistory::history_sum
uint64_t history_sum
Definition: vf_normalize.c:85
AV_PIX_FMT_RGB48
#define AV_PIX_FMT_RGB48
Definition: pixfmt.h:464
uninit
static av_cold void uninit(AVFilterContext *ctx)
Definition: vf_normalize.c:457
NormalizeContext::min
NormalizeHistory min[3]
Definition: vf_normalize.c:114
av_frame_is_writable
int av_frame_is_writable(AVFrame *frame)
Check if the frame data is writable.
Definition: frame.c:615
filter_frame
static int filter_frame(AVFilterLink *inlink, AVFrame *in)
Definition: vf_normalize.c:467
ff_filter_process_command
int ff_filter_process_command(AVFilterContext *ctx, const char *cmd, const char *arg, char *res, int res_len, int flags)
Generic processing of user supplied commands that are set in the same way as the filter options.
Definition: avfilter.c:890
NormalizeContext::find_min_max
void(* find_min_max)(struct NormalizeContext *s, AVFrame *in, NormalizeLocal min[3], NormalizeLocal max[3])
Definition: vf_normalize.c:119
ff_vf_normalize
const AVFilter ff_vf_normalize
Definition: vf_normalize.c:512
AV_PIX_FMT_RGB0
@ AV_PIX_FMT_RGB0
packed RGB 8:8:8, 32bpp, RGBXRGBX... X=unused/undefined
Definition: pixfmt.h:263
NormalizeContext::co
uint8_t co[4]
Definition: vf_normalize.c:104
internal.h
AV_PIX_FMT_ARGB
@ AV_PIX_FMT_ARGB
packed ARGB 8:8:8:8, 32bpp, ARGBARGB...
Definition: pixfmt.h:99
AV_OPT_TYPE_FLOAT
@ AV_OPT_TYPE_FLOAT
Definition: opt.h:238
normalize
Definition: normalize.py:1
AV_PIX_FMT_BGRA64
#define AV_PIX_FMT_BGRA64
Definition: pixfmt.h:473
FFMIN3
#define FFMIN3(a, b, c)
Definition: macros.h:50
NormalizeContext::smoothing
int smoothing
Definition: vf_normalize.c:100
config_input
static int config_input(AVFilterLink *inlink)
Definition: vf_normalize.c:411
AV_PIX_FMT_GBRP12
#define AV_PIX_FMT_GBRP12
Definition: pixfmt.h:495
FFMIN
#define FFMIN(a, b)
Definition: macros.h:49
AVFilterPad::name
const char * name
Pad name.
Definition: internal.h:39
find_min_max_16
static void find_min_max_16(NormalizeContext *s, AVFrame *in, NormalizeLocal min[3], NormalizeLocal max[3])
Definition: vf_normalize.c:212
AVFilter
Filter definition.
Definition: avfilter.h:166
AV_PIX_FMT_0BGR
@ AV_PIX_FMT_0BGR
packed BGR 8:8:8, 32bpp, XBGRXBGR... X=unused/undefined
Definition: pixfmt.h:264
normalize
static void normalize(NormalizeContext *s, AVFrame *in, AVFrame *out)
Definition: vf_normalize.c:289
AVFrame::height
int height
Definition: frame.h:416
NormalizeContext::frame_num
int frame_num
Definition: vf_normalize.c:111
AV_PIX_FMT_NONE
@ AV_PIX_FMT_NONE
Definition: pixfmt.h:72
NormalizeContext::num_components
int num_components
Definition: vf_normalize.c:108
AV_OPT_TYPE_INT
@ AV_OPT_TYPE_INT
Definition: opt.h:235
avfilter.h
NormalizeContext::strength
float strength
Definition: vf_normalize.c:102
AV_PIX_FMT_FLAG_PLANAR
#define AV_PIX_FMT_FLAG_PLANAR
At least one pixel component is not in the first data plane.
Definition: pixdesc.h:132
AVFilterContext
An instance of a filter.
Definition: avfilter.h:407
AV_PIX_FMT_GBRP
@ AV_PIX_FMT_GBRP
planar GBR 4:4:4 24bpp
Definition: pixfmt.h:165
desc
const char * desc
Definition: libsvtav1.c:75
AVMEDIA_TYPE_VIDEO
@ AVMEDIA_TYPE_VIDEO
Definition: avutil.h:201
AVPixFmtDescriptor
Descriptor that unambiguously describes how the bits of a pixel are stored in the up to 4 data planes...
Definition: pixdesc.h:69
FILTER_OUTPUTS
#define FILTER_OUTPUTS(array)
Definition: internal.h:183
av_freep
#define av_freep(p)
Definition: tableprint_vlc.h:34
ff_fill_rgba_map
int ff_fill_rgba_map(uint8_t *rgba_map, enum AVPixelFormat pix_fmt)
Definition: drawutils.c:35
FFMAX3
#define FFMAX3(a, b, c)
Definition: macros.h:48
AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL
#define AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL
Same as AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC, except that the filter will have its filter_frame() c...
Definition: avfilter.h:155
AVFrame::linesize
int linesize[AV_NUM_DATA_POINTERS]
For video, a positive or negative value, which is typically indicating the size in bytes of each pict...
Definition: frame.h:389
AV_PIX_FMT_0RGB
@ AV_PIX_FMT_0RGB
packed RGB 8:8:8, 32bpp, XRGBXRGB... X=unused/undefined
Definition: pixfmt.h:262
NormalizeHistory
Definition: vf_normalize.c:83
drawutils.h
NormalizeContext::swhitept
int swhitept[4]
Definition: vf_normalize.c:107
NormalizeHistory::history
uint16_t * history
Definition: vf_normalize.c:84
NormalizeLocal::smoothed
float smoothed
Definition: vf_normalize.c:90
min
float min
Definition: vorbis_enc_data.h:429
AVFILTER_DEFINE_CLASS
AVFILTER_DEFINE_CLASS(normalize)