Go to the documentation of this file.
64 #define FREEZE_INTERVAL 128
82 (
s->block_size & (
s->block_size - 1))) {
88 int frontier, max_paths;
90 if ((
unsigned)avctx->
trellis > 16
U) {
106 frontier = 1 << avctx->
trellis;
142 bytestream_put_le16(&extradata, avctx->
frame_size);
143 bytestream_put_le16(&extradata, 7);
144 for (
i = 0;
i < 7;
i++) {
231 const int sign = (
delta < 0) * 8;
238 nibble = sign | nibble;
240 c->prev_sample +=
diff;
251 int nibble = 8*(
delta < 0);
273 c->prev_sample -=
diff;
275 c->prev_sample +=
diff;
289 ((
c->sample2) * (
c->coeff2))) / 64;
293 bias =
c->idelta / 2;
295 bias = -
c->idelta / 2;
297 nibble = (nibble + bias) /
c->idelta;
300 predictor += ((nibble & 0x08) ? (nibble - 0x10) : nibble) *
c->idelta;
302 c->sample2 =
c->sample1;
340 const int frontier = 1 << avctx->
trellis;
347 int pathn = 0, froze = -1,
i, j, k, generation = 0;
349 memset(
hash, 0xff, 65536 *
sizeof(*
hash));
351 memset(nodep_buf, 0, 2 * frontier *
sizeof(*nodep_buf));
352 nodes[0] = node_buf + frontier;
355 nodes[0]->
step =
c->step_index;
364 nodes[0]->
step =
c->idelta;
367 nodes[0]->
step = 127;
370 nodes[0]->
step =
c->step;
375 for (
i = 0;
i < n;
i++) {
380 memset(nodes_next, 0, frontier *
sizeof(
TrellisNode*));
381 for (j = 0; j < frontier && nodes[j]; j++) {
384 const int range = (j < frontier / 2) ? 1 : 0;
385 const int step = nodes[j]->step;
388 const int predictor = ((nodes[j]->sample1 *
c->coeff1) +
389 (nodes[j]->sample2 *
c->coeff2)) / 64;
391 const int nmin =
av_clip(div-range, -8, 6);
392 const int nmax =
av_clip(div+range, -7, 7);
393 for (nidx = nmin; nidx <= nmax; nidx++) {
394 const int nibble = nidx & 0xf;
396 #define STORE_NODE(NAME, STEP_INDEX)\
402 dec_sample = av_clip_int16(dec_sample);\
403 d = sample - dec_sample;\
404 ssd = nodes[j]->ssd + d*(unsigned)d;\
409 if (ssd < nodes[j]->ssd)\
422 h = &hash[(uint16_t) dec_sample];\
423 if (*h == generation)\
425 if (heap_pos < frontier) {\
430 pos = (frontier >> 1) +\
431 (heap_pos & ((frontier >> 1) - 1));\
432 if (ssd > nodes_next[pos]->ssd)\
437 u = nodes_next[pos];\
439 av_assert1(pathn < FREEZE_INTERVAL << avctx->trellis);\
441 nodes_next[pos] = u;\
445 u->step = STEP_INDEX;\
446 u->sample2 = nodes[j]->sample1;\
447 u->sample1 = dec_sample;\
448 paths[u->path].nibble = nibble;\
449 paths[u->path].prev = nodes[j]->path;\
453 int parent = (pos - 1) >> 1;\
454 if (nodes_next[parent]->ssd <= ssd)\
456 FFSWAP(TrellisNode*, nodes_next[parent], nodes_next[pos]);\
467 #define LOOP_NODES(NAME, STEP_TABLE, STEP_INDEX)\
468 const int predictor = nodes[j]->sample1;\
469 const int div = (sample - predictor) * 4 / STEP_TABLE;\
470 int nmin = av_clip(div - range, -7, 6);\
471 int nmax = av_clip(div + range, -6, 7);\
476 for (nidx = nmin; nidx <= nmax; nidx++) {\
477 const int nibble = nidx < 0 ? 7 - nidx : nidx;\
478 int dec_sample = predictor +\
480 ff_adpcm_yamaha_difflookup[nibble]) / 8;\
481 STORE_NODE(NAME, STEP_INDEX);\
499 if (generation == 255) {
500 memset(
hash, 0xff, 65536 *
sizeof(*
hash));
505 if (nodes[0]->ssd > (1 << 28)) {
506 for (j = 1; j < frontier && nodes[j]; j++)
507 nodes[j]->ssd -= nodes[0]->ssd;
513 p = &paths[nodes[0]->path];
514 for (k =
i; k > froze; k--) {
523 memset(nodes + 1, 0, (frontier - 1) *
sizeof(
TrellisNode*));
527 p = &paths[nodes[0]->
path];
528 for (
i = n - 1;
i > froze;
i--) {
533 c->predictor = nodes[0]->sample1;
534 c->sample1 = nodes[0]->sample1;
535 c->sample2 = nodes[0]->sample2;
536 c->step_index = nodes[0]->step;
537 c->step = nodes[0]->step;
538 c->idelta = nodes[0]->step;
551 return (nibble >>
shift) & 0x0F;
555 const int16_t *
samples,
int nsamples,
567 for (
int n = 0; n < nsamples; n++) {
584 int n,
i, ch, st, pkt_size,
ret;
592 samples_p = (int16_t **)
frame->extended_data;
610 blocks = (
frame->nb_samples - 1) / 8;
612 for (ch = 0; ch < avctx->
channels; ch++) {
614 status->prev_sample = samples_p[ch][0];
617 bytestream_put_le16(&dst,
status->prev_sample);
618 *dst++ =
status->step_index;
626 for (ch = 0; ch < avctx->
channels; ch++) {
628 buf + ch * blocks * 8, &
c->status[ch],
631 for (
i = 0;
i < blocks;
i++) {
632 for (ch = 0; ch < avctx->
channels; ch++) {
633 uint8_t *buf1 = buf + ch * blocks * 8 +
i * 8;
634 for (j = 0; j < 8; j += 2)
635 *dst++ = buf1[j] | (buf1[j + 1] << 4);
640 for (
i = 0;
i < blocks;
i++) {
641 for (ch = 0; ch < avctx->
channels; ch++) {
643 const int16_t *smp = &samples_p[ch][1 +
i * 8];
644 for (j = 0; j < 8; j += 2) {
659 for (ch = 0; ch < avctx->
channels; ch++) {
667 for (
i = 0;
i < 64;
i++)
671 for (
i = 0;
i < 64;
i += 2) {
691 for (
i = 0;
i <
frame->nb_samples;
i++) {
692 for (ch = 0; ch < avctx->
channels; ch++) {
707 for (n =
frame->nb_samples / 2; n > 0; n--) {
708 for (ch = 0; ch < avctx->
channels; ch++) {
723 n =
frame->nb_samples - 1;
744 buf + n, &
c->status[1], n,
746 for (
i = 0;
i < n;
i++) {
753 for (
i = 1;
i <
frame->nb_samples;
i++) {
772 if (
c->status[
i].idelta < 16)
773 c->status[
i].idelta = 16;
774 bytestream_put_le16(&dst,
c->status[
i].idelta);
780 bytestream_put_le16(&dst,
c->status[
i].sample1);
783 bytestream_put_le16(&dst,
c->status[
i].sample2);
792 for (
i = 0;
i < n;
i += 2)
793 *dst++ = (buf[
i] << 4) | buf[
i + 1];
799 for (
i = 0;
i < n;
i++)
800 *dst++ = (buf[
i] << 4) | buf[n +
i];
804 for (
i = 7 * avctx->
channels; i < avctx->block_align;
i++) {
813 n =
frame->nb_samples / 2;
821 for (
i = 0;
i < n;
i += 2)
822 *dst++ = buf[
i] | (buf[
i + 1] << 4);
828 for (
i = 0;
i < n;
i++)
829 *dst++ = buf[
i] | (buf[n +
i] << 4);
833 for (n *= avctx->
channels; n > 0; n--) {
847 for (n =
frame->nb_samples / 2; n > 0; n--) {
848 for (ch = 0; ch < avctx->
channels; ch++) {
862 c->status[0].prev_sample = *
samples;
863 bytestream_put_le16(&dst,
c->status[0].prev_sample);
864 bytestream_put_byte(&dst,
c->status[0].step_index);
865 bytestream_put_byte(&dst, 0);
869 n =
frame->nb_samples >> 1;
875 for (
i = 0;
i < n;
i++)
876 bytestream_put_byte(&dst, (buf[2 *
i] << 4) | buf[2 *
i + 1]);
880 }
else for (n =
frame->nb_samples >> 1; n > 0; n--) {
884 bytestream_put_byte(&dst, nibble);
889 bytestream_put_byte(&dst, nibble);
900 for (ch = 0; ch < avctx->
channels; ch++) {
901 int64_t
error = INT64_MAX, tmperr = INT64_MAX;
903 int saved1 =
c->status[ch].sample1;
904 int saved2 =
c->status[ch].sample2;
907 for (
int s = 2;
s < 18 && tmperr != 0;
s++) {
908 for (
int f = 0;
f < 2 && tmperr != 0;
f++) {
909 c->status[ch].sample1 = saved1;
910 c->status[ch].sample2 = saved2;
913 if (tmperr <
error) {
922 c->status[ch].sample1 = saved1;
923 c->status[ch].sample2 = saved2;
935 avpkt->
size = pkt_size;
950 .
name =
"block_size",
951 .help =
"set the block size",
954 .default_val = {.i64 = 1024},
962 #define ADPCM_ENCODER(id_, name_, sample_fmts_, capabilities_, long_name_) \
963 static const AVClass name_ ## _encoder_class = { \
964 .class_name = #name_, \
965 .item_name = av_default_item_name, \
967 .version = LIBAVUTIL_VERSION_INT, \
970 AVCodec ff_ ## name_ ## _encoder = { \
972 .long_name = NULL_IF_CONFIG_SMALL(long_name_), \
973 .type = AVMEDIA_TYPE_AUDIO, \
975 .priv_data_size = sizeof(ADPCMEncodeContext), \
976 .init = adpcm_encode_init, \
977 .encode2 = adpcm_encode_frame, \
978 .close = adpcm_encode_close, \
979 .sample_fmts = sample_fmts_, \
980 .capabilities = capabilities_, \
981 .caps_internal = FF_CODEC_CAP_INIT_CLEANUP | FF_CODEC_CAP_INIT_THREADSAFE, \
982 .priv_class = &name_ ## _encoder_class, \
static void error(const char *err)
int frame_size
Number of samples per channel in an audio frame.
static uint8_t adpcm_yamaha_compress_sample(ADPCMChannelStatus *c, int16_t sample)
@ AV_CODEC_ID_ADPCM_IMA_QT
they must not be accessed directly The fifo field contains the frames that are queued in the input for processing by the filter The status_in and status_out fields contains the queued status(EOF or error) of the link
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
#define LOOP_NODES(NAME, STEP_TABLE, STEP_INDEX)
int sample_rate
samples per second
#define u(width, name, range_min, range_max)
static enum AVSampleFormat sample_fmts[]
const int16_t ff_adpcm_AdaptationTable[]
static void put_sbits(PutBitContext *pb, int n, int32_t value)
static void init_put_bits(PutBitContext *s, uint8_t *buffer, int buffer_size)
Initialize the PutBitContext s.
This structure describes decoded (raw) audio or video data.
static void put_bits(Jpeg2000EncoderContext *s, int val, int n)
put n times val bit
trying all byte sequences megabyte in length and selecting the best looking sequence will yield cases to try But a word about which is also called distortion Distortion can be quantified by almost any quality measurement one chooses the sum of squared differences is used but more complex methods that consider psychovisual effects can be used as well It makes no difference in this discussion First step
#define ADPCM_ENCODER(id_, name_, sample_fmts_, capabilities_, long_name_)
const struct AVCodec * codec
#define STORE_NODE(NAME, STEP_INDEX)
#define FF_ALLOC_TYPED_ARRAY(p, nelem)
ADPCMChannelStatus status[6]
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
static const AVOption options[]
#define AV_OPT_FLAG_ENCODING_PARAM
a generic parameter which can be set by the user for muxing or encoding
#define av_assert0(cond)
assert() equivalent, that is always enabled.
static void adpcm_compress_trellis(AVCodecContext *avctx, const int16_t *samples, uint8_t *dst, ADPCMChannelStatus *c, int n, int stride)
#define AV_OPT_FLAG_AUDIO_PARAM
Describe the class of an AVClass context structure.
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
@ AV_CODEC_ID_ADPCM_YAMAHA
@ AV_CODEC_ID_ADPCM_IMA_AMV
int trellis
trellis RD quantization
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
static uint8_t adpcm_ima_alp_compress_sample(ADPCMChannelStatus *c, int16_t sample)
int av_get_bits_per_sample(enum AVCodecID codec_id)
Return codec bits per sample.
const int8_t ff_adpcm_yamaha_difflookup[]
@ AV_CODEC_ID_ADPCM_IMA_ALP
const int16_t ff_adpcm_step_table[89]
This is the step table.
static void predictor(uint8_t *src, ptrdiff_t size)
@ AV_SAMPLE_FMT_S16P
signed 16 bits, planar
int channels
number of audio channels
int bits_per_coded_sample
bits per sample/pixel from the demuxer (needed for huffyuv).
const uint8_t ff_adpcm_AdaptCoeff1[]
Divided by 4 to fit in 8-bit integers.
const int8_t ff_adpcm_AdaptCoeff2[]
Divided by 4 to fit in 8-bit integers.
uint8_t * extradata
some codecs need / can use extradata like Huffman tables.
AVSampleFormat
Audio sample formats.
static uint8_t adpcm_ima_compress_sample(ADPCMChannelStatus *c, int16_t sample)
@ AV_CODEC_ID_ADPCM_IMA_APM
@ AV_SAMPLE_FMT_S16
signed 16 bits
void * av_mallocz(size_t size)
Allocate a memory block with alignment suitable for all memory accesses (including vectors if availab...
int16_t ff_adpcm_argo_expand_nibble(ADPCMChannelStatus *cs, int nibble, int shift, int flag)
static int64_t adpcm_argo_compress_block(ADPCMChannelStatus *cs, PutBitContext *pb, const int16_t *samples, int nsamples, int shift, int flag)
const int8_t ff_adpcm_index_table[16]
static int adpcm_encode_frame(AVCodecContext *avctx, AVPacket *avpkt, const AVFrame *frame, int *got_packet_ptr)
int block_align
number of bytes per packet if constant and known or 0 Used by some WAV based audio codecs.
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return or at least make progress towards producing a frame
static enum AVSampleFormat sample_fmts_p[]
#define AV_INPUT_BUFFER_PADDING_SIZE
main external API structure.
const int16_t ff_adpcm_yamaha_indexscale[]
Filter the word “frame” indicates either a video frame or a group of audio samples
static int shift(int a, int b)
static void flush_put_bits(PutBitContext *s)
Pad the end of the output stream with zeros.
@ AV_CODEC_ID_ADPCM_IMA_SSI
static av_cold int adpcm_encode_init(AVCodecContext *avctx)
static av_always_inline int diff(const uint32_t a, const uint32_t b)
static int adpcm_argo_compress_nibble(const ADPCMChannelStatus *cs, int16_t s, int shift, int flag)
This structure stores compressed data.
@ AV_CODEC_ID_ADPCM_IMA_WAV
static uint8_t adpcm_ima_qt_compress_sample(ADPCMChannelStatus *c, int16_t sample)
#define AV_CODEC_CAP_SMALL_LAST_FRAME
Codec can be fed a final frame with a smaller size.
int ff_alloc_packet2(AVCodecContext *avctx, AVPacket *avpkt, int64_t size, int64_t min_size)
Check AVPacket size and/or allocate data.
static uint8_t adpcm_ms_compress_sample(ADPCMChannelStatus *c, int16_t sample)
static av_cold int adpcm_encode_close(AVCodecContext *avctx)