Go to the documentation of this file.
35 #define OFFSET(x) offsetof(CrystalizerContext, x)
36 #define A AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_RUNTIME_PARAM
91 const void **
s =
td->s;
92 const int nb_samples =
td->nb_samples;
94 const float mult =
td->mult;
96 const int start = (
channels * jobnr) / nb_jobs;
97 const int end = (
channels * (jobnr+1)) / nb_jobs;
101 for (
c = start;
c < end;
c++) {
102 const float *
src =
s[0];
105 for (n = 0; n < nb_samples; n++) {
106 float current =
src[
c];
107 dst[
c] = current + (current - prv[
c]) *
mult;
126 const void **
s =
td->s;
127 const int nb_samples =
td->nb_samples;
130 const int clip =
td->clip;
131 const int start = (
channels * jobnr) / nb_jobs;
132 const int end = (
channels * (jobnr+1)) / nb_jobs;
136 for (
c = start;
c < end;
c++) {
137 const double *
src =
s[0];
140 for (n = 0; n < nb_samples; n++) {
141 double current =
src[
c];
143 dst[
c] = current + (current - prv[
c]) *
mult;
162 const void **
s =
td->s;
163 const int nb_samples =
td->nb_samples;
166 const int clip =
td->clip;
167 const int start = (
channels * jobnr) / nb_jobs;
168 const int end = (
channels * (jobnr+1)) / nb_jobs;
171 for (
c = start;
c < end;
c++) {
172 const float *
src =
s[
c];
176 for (n = 0; n < nb_samples; n++) {
177 float current =
src[n];
179 dst[n] = current + (current - prv[0]) *
mult;
195 const void **
s =
td->s;
196 const int nb_samples =
td->nb_samples;
198 const double mult =
td->mult;
199 const int clip =
td->clip;
200 const int start = (
channels * jobnr) / nb_jobs;
201 const int end = (
channels * (jobnr+1)) / nb_jobs;
204 for (
c = start;
c < end;
c++) {
205 const double *
src =
s[
c];
209 for (n = 0; n < nb_samples; n++) {
210 double current =
src[n];
212 dst[n] = current + (current - prv[0]) *
mult;
228 const void **
s =
td->s;
229 const int nb_samples =
td->nb_samples;
231 const float mult = -
td->mult;
232 const float div = -
td->mult + 1.f;
233 const int clip =
td->clip;
234 const int start = (
channels * jobnr) / nb_jobs;
235 const int end = (
channels * (jobnr+1)) / nb_jobs;
239 for (
c = start;
c < end;
c++) {
240 const float *
src =
s[0];
243 for (n = 0; n < nb_samples; n++) {
244 float current =
src[
c];
245 dst[
c] = (current + prv[
c] *
mult) / div;
264 const void **
s =
td->s;
265 const int nb_samples =
td->nb_samples;
267 const double mult = -
td->mult;
268 const double div = -
td->mult + 1.f;
269 const int clip =
td->clip;
270 const int start = (
channels * jobnr) / nb_jobs;
271 const int end = (
channels * (jobnr+1)) / nb_jobs;
275 for (
c = start;
c < end;
c++) {
276 const double *
src =
s[0];
279 for (n = 0; n < nb_samples; n++) {
280 double current =
src[
c];
282 dst[
c] = (current + prv[
c] *
mult) / div;
301 const void **
s =
td->s;
302 const int nb_samples =
td->nb_samples;
304 const float mult = -
td->mult;
305 const float div = -
td->mult + 1.f;
306 const int clip =
td->clip;
307 const int start = (
channels * jobnr) / nb_jobs;
308 const int end = (
channels * (jobnr+1)) / nb_jobs;
311 for (
c = start;
c < end;
c++) {
312 const float *
src =
s[
c];
316 for (n = 0; n < nb_samples; n++) {
317 float current =
src[n];
319 dst[n] = (current + prv[0] *
mult) / div;
335 const void **
s =
td->s;
336 const int nb_samples =
td->nb_samples;
338 const double mult = -
td->mult;
339 const double div = -
td->mult + 1.f;
340 const int clip =
td->clip;
341 const int start = (
channels * jobnr) / nb_jobs;
342 const int end = (
channels * (jobnr+1)) / nb_jobs;
345 for (
c = start;
c < end;
c++) {
346 const double *
src =
s[
c];
350 for (n = 0; n < nb_samples; n++) {
351 double current =
src[n];
353 dst[n] = (current + prv[0] *
mult) / div;
406 td.d = (
void **)
out->extended_data;
407 td.s = (
const void **)
in->extended_data;
408 td.p = (
void **)
s->prev->extended_data;
409 td.nb_samples =
in->nb_samples;
411 td.mult =
ctx->is_disabled ? 0.f :
s->mult;
430 char *res,
int res_len,
int flags)
460 .
name =
"crystalizer",
464 .priv_class = &crystalizer_class,
static const AVFilterPad outputs[]
AVFrame * ff_get_audio_buffer(AVFilterLink *link, int nb_samples)
Request an audio samples buffer with a specific set of permissions.
static int ifilter_dblp(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
@ AV_SAMPLE_FMT_FLTP
float, planar
A list of supported channel layouts.
AVFilter ff_af_crystalizer
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
static int filter_flt(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
int ff_filter_frame(AVFilterLink *link, AVFrame *frame)
Send a frame of data to the next filter.
static enum AVSampleFormat sample_fmts[]
static int ifilter_fltp(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
static int config_input(AVFilterLink *inlink)
enum MovChannelLayoutTag * layouts
The exact code depends on how similar the blocks are and how related they are to the and needs to apply these operations to the correct inlink or outlink if there are several Macros are available to factor that when no extra processing is inlink
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
This structure describes decoded (raw) audio or video data.
static av_cold void uninit(AVFilterContext *ctx)
const char * name
Filter name.
AVFormatInternal * internal
An opaque field for libavformat internal usage.
A link between two filters.
AVFILTER_DEFINE_CLASS(crystalizer)
A filter pad used for either input or output.
static int16_t mult(Float11 *f1, Float11 *f2)
static int ifilter_dbl(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
static int query_formats(AVFilterContext *ctx)
Describe the class of an AVClass context structure.
static int process_command(AVFilterContext *ctx, const char *cmd, const char *args, char *res, int res_len, int flags)
int av_frame_copy_props(AVFrame *dst, const AVFrame *src)
Copy only "metadata" fields from src to dst.
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
static int filter_frame(AVFilterLink *inlink, AVFrame *in)
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
static int filter_dbl(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
int av_frame_is_writable(AVFrame *frame)
Check if the frame data is writable.
int ff_filter_process_command(AVFilterContext *ctx, const char *cmd, const char *arg, char *res, int res_len, int flags)
Generic processing of user supplied commands that are set in the same way as the filter options.
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(const int16_t *) pi >> 8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(const int32_t *) pi >> 24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31)))) #define SET_CONV_FUNC_GROUP(ofmt, ifmt) static void set_generic_function(AudioConvert *ac) { } void ff_audio_convert_free(AudioConvert **ac) { if(! *ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);} AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, int sample_rate, int apply_map) { AudioConvert *ac;int in_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) return NULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method !=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt) > 2) { ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc) { av_free(ac);return NULL;} return ac;} in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar) { ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar ? ac->channels :1;} else if(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;else ac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);return ac;} int ff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in) { int use_generic=1;int len=in->nb_samples;int p;if(ac->dc) { av_log(ac->avr, AV_LOG_TRACE, "%d samples - audio_convert: %s to %s (dithered)\n", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));return ff_convert_dither(ac-> in
static const AVFilterPad inputs[]
static const AVOption crystalizer_options[]
int ff_filter_get_nb_threads(AVFilterContext *ctx)
Get number of threads for current filter instance.
AVSampleFormat
Audio sample formats.
Used for passing data between threads.
const char * name
Pad name.
static int filter_fltp(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
@ AV_SAMPLE_FMT_DBLP
double, planar
int(* filter)(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
#define AVFILTER_FLAG_SLICE_THREADS
The filter supports multithreading by splitting frames into multiple parts and processing them concur...
#define AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL
Same as AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC, except that the filter will have its filter_frame() c...
#define flags(name, subs,...)
@ AV_SAMPLE_FMT_DBL
double
static int ifilter_flt(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
static double clip(void *opaque, double val)
Clip value val in the minval - maxval range.
static int filter_dblp(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)