FFmpeg
dnn_backend_native_layer_conv2d.c
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2018 Sergey Lavrushkin
3  *
4  * This file is part of FFmpeg.
5  *
6  * FFmpeg is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * FFmpeg is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with FFmpeg; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19  */
20 
21 #include "libavutil/avassert.h"
22 #include "libavutil/thread.h"
23 #include "libavutil/cpu.h"
25 
26 #define CLAMP_TO_EDGE(x, w) ((x) < 0 ? 0 : ((x) >= (w) ? (w - 1) : (x)))
27 
28 //struct to pass parameters
29 typedef struct ThreadCommonParam{
33  const void *parameters;
35  float *output_data;
37 
38 typedef struct ThreadParam{
41 #if HAVE_PTHREAD_CANCEL
42  pthread_t thread;
43 #endif
44 } ThreadParam;
45 
46 int ff_dnn_load_layer_conv2d(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num)
47 {
48  ConvolutionalParams *conv_params;
49  int kernel_size;
50  int dnn_size = 0;
51  conv_params = av_malloc(sizeof(*conv_params));
52  if (!conv_params)
53  return 0;
54 
55  conv_params->dilation = (int32_t)avio_rl32(model_file_context);
56  conv_params->padding_method = (int32_t)avio_rl32(model_file_context);
57  conv_params->activation = (int32_t)avio_rl32(model_file_context);
58  conv_params->input_num = (int32_t)avio_rl32(model_file_context);
59  conv_params->output_num = (int32_t)avio_rl32(model_file_context);
60  conv_params->kernel_size = (int32_t)avio_rl32(model_file_context);
61  conv_params->has_bias = (int32_t)avio_rl32(model_file_context);
62  dnn_size += 28;
63 
64  kernel_size = conv_params->input_num * conv_params->output_num *
65  conv_params->kernel_size * conv_params->kernel_size;
66  dnn_size += kernel_size * 4;
67  if (conv_params->has_bias)
68  dnn_size += conv_params->output_num * 4;
69 
70  if (dnn_size > file_size || conv_params->input_num <= 0 ||
71  conv_params->output_num <= 0 || conv_params->kernel_size <= 0){
72  av_freep(&conv_params);
73  return 0;
74  }
75 
76  conv_params->kernel = av_malloc_array(kernel_size, sizeof(*conv_params->kernel));
77  if (!conv_params->kernel) {
78  av_freep(&conv_params);
79  return 0;
80  }
81  for (int i = 0; i < kernel_size; ++i) {
82  conv_params->kernel[i] = av_int2float(avio_rl32(model_file_context));
83  }
84 
85  conv_params->biases = NULL;
86  if (conv_params->has_bias) {
87  conv_params->biases = av_malloc_array(conv_params->output_num, sizeof(*conv_params->biases));
88  if (!conv_params->biases){
89  av_freep(&conv_params->kernel);
90  av_freep(&conv_params);
91  return 0;
92  }
93  for (int i = 0; i < conv_params->output_num; ++i){
94  conv_params->biases[i] = av_int2float(avio_rl32(model_file_context));
95  }
96  }
97 
98  layer->params = conv_params;
99 
100  layer->input_operand_indexes[0] = (int32_t)avio_rl32(model_file_context);
101  layer->output_operand_index = (int32_t)avio_rl32(model_file_context);
102  dnn_size += 8;
103 
104  if (layer->input_operand_indexes[0] >= operands_num || layer->output_operand_index >= operands_num) {
105  return 0;
106  }
107 
108  return dnn_size;
109 }
110 
111 static void * dnn_execute_layer_conv2d_thread(void *threadarg)
112 {
113  //pass parameters
114  ThreadParam *thread_param = threadarg;
115  ThreadCommonParam *thread_common_param = thread_param->thread_common_param;
116  DnnOperand *operands = thread_common_param->operands;
117  int32_t input_operand_index = thread_common_param->input_operand_indexes[0];
118  int height = operands[input_operand_index].dims[1];
119  int width = operands[input_operand_index].dims[2];
120  int channel = operands[input_operand_index].dims[3];
121  const float *input = operands[input_operand_index].data;
122  const ConvolutionalParams *conv_params = thread_common_param->parameters;
123 
124  int radius = conv_params->kernel_size >> 1;
125  int src_linesize = width * conv_params->input_num;
126  int filter_linesize = conv_params->kernel_size * conv_params->input_num;
127  int filter_size = conv_params->kernel_size * filter_linesize;
128  int pad_size = (conv_params->padding_method == VALID) ? (conv_params->kernel_size - 1) / 2 * conv_params->dilation : 0;
129 
130  float *output = thread_common_param->output_data;
131  output += (conv_params->output_num) * (width - 2 * pad_size) * (thread_param->thread_start - pad_size);
132 
133  av_assert0(channel == conv_params->input_num);
134 
135  for (int y = thread_param->thread_start; y < thread_param->thread_end; ++y) {
136  for (int x = pad_size; x < width - pad_size; ++x) {
137  for (int n_filter = 0; n_filter < conv_params->output_num; ++n_filter) {
138  if (conv_params->has_bias)
139  output[n_filter] = conv_params->biases[n_filter];
140  else
141  output[n_filter] = 0.f;
142 
143  for (int ch = 0; ch < conv_params->input_num; ++ch) {
144  for (int kernel_y = 0; kernel_y < conv_params->kernel_size; ++kernel_y) {
145  for (int kernel_x = 0; kernel_x < conv_params->kernel_size; ++kernel_x) {
146  float input_pel;
147  if (conv_params->padding_method == SAME_CLAMP_TO_EDGE) {
148  int y_pos = CLAMP_TO_EDGE(y + (kernel_y - radius) * conv_params->dilation, height);
149  int x_pos = CLAMP_TO_EDGE(x + (kernel_x - radius) * conv_params->dilation, width);
150  input_pel = input[y_pos * src_linesize + x_pos * conv_params->input_num + ch];
151  } else {
152  int y_pos = y + (kernel_y - radius) * conv_params->dilation;
153  int x_pos = x + (kernel_x - radius) * conv_params->dilation;
154  input_pel = (x_pos < 0 || x_pos >= width || y_pos < 0 || y_pos >= height) ? 0.0 :
155  input[y_pos * src_linesize + x_pos * conv_params->input_num + ch];
156  }
157 
158 
159  output[n_filter] += input_pel * conv_params->kernel[n_filter * filter_size + kernel_y * filter_linesize +
160  kernel_x * conv_params->input_num + ch];
161  }
162  }
163  }
164  switch (conv_params->activation){
165  case RELU:
166  output[n_filter] = FFMAX(output[n_filter], 0.0);
167  break;
168  case TANH:
169  output[n_filter] = 2.0f / (1.0f + exp(-2.0f * output[n_filter])) - 1.0f;
170  break;
171  case SIGMOID:
172  output[n_filter] = 1.0f / (1.0f + exp(-output[n_filter]));
173  break;
174  case NONE:
175  break;
176  case LEAKY_RELU:
177  output[n_filter] = FFMAX(output[n_filter], 0.0) + 0.2 * FFMIN(output[n_filter], 0.0);
178  }
179  }
180  output += conv_params->output_num;
181  }
182  }
183  return NULL;
184 }
185 
186 
187 int ff_dnn_execute_layer_conv2d(DnnOperand *operands, const int32_t *input_operand_indexes,
188  int32_t output_operand_index, const void *parameters, NativeContext *ctx)
189 {
190 #if HAVE_PTHREAD_CANCEL
191  int thread_num = (ctx->options.conv2d_threads <= 0 || ctx->options.conv2d_threads > av_cpu_count())
192  ? (av_cpu_count() + 1) : (ctx->options.conv2d_threads);
193  int ret = DNN_SUCCESS, thread_stride;
194  ThreadParam *thread_param;
195 #else
196  ThreadParam thread_param = { 0 };
197 #endif
198  ThreadCommonParam thread_common_param;
199  const ConvolutionalParams *conv_params = parameters;
200  int height = operands[input_operand_indexes[0]].dims[1];
201  int width = operands[input_operand_indexes[0]].dims[2];
202  int pad_size = (conv_params->padding_method == VALID) ? (conv_params->kernel_size - 1) / 2 * conv_params->dilation : 0;
203  DnnOperand *output_operand = &operands[output_operand_index];
204  void *tmp;
205 
206  output_operand->dims[0] = operands[input_operand_indexes[0]].dims[0];
207  output_operand->dims[1] = height - pad_size * 2;
208  output_operand->dims[2] = width - pad_size * 2;
209  output_operand->dims[3] = conv_params->output_num;
210  output_operand->data_type = operands[input_operand_indexes[0]].data_type;
211  output_operand->length = ff_calculate_operand_data_length(output_operand);
212  if (output_operand->length <= 0) {
213  av_log(ctx, AV_LOG_ERROR, "The output data length overflow\n");
214  return DNN_ERROR;
215  }
216  tmp = av_realloc(output_operand->data, output_operand->length);
217  if (!tmp) {
218  av_log(ctx, AV_LOG_ERROR, "Failed to reallocate memory for output\n");
219  return DNN_ERROR;
220  }
221  output_operand->data = tmp;
222  thread_common_param.output_data = output_operand->data;
223  thread_common_param.operands = operands;
224  thread_common_param.input_operand_indexes = input_operand_indexes;
225  thread_common_param.output_operand_index = output_operand_index;
226  thread_common_param.parameters = parameters;
227  thread_common_param.ctx = ctx;
228 
229 #if HAVE_PTHREAD_CANCEL
230  thread_param = av_malloc_array(thread_num, sizeof(*thread_param));
231  if (!thread_param)
232  return DNN_ERROR;
233  thread_stride = (height - pad_size * 2) / thread_num;
234  //create threads
235  for (int i = 0; i < thread_num; i++){
236  thread_param[i].thread_common_param = &thread_common_param;
237  thread_param[i].thread_start = thread_stride * i + pad_size;
238  thread_param[i].thread_end = (i == thread_num - 1) ? (height - pad_size) : (thread_param[i].thread_start + thread_stride);
239  if (pthread_create(&thread_param[i].thread, NULL,
240  dnn_execute_layer_conv2d_thread, &thread_param[i])) {
241  thread_num = i;
242  ret = DNN_ERROR;
243  break;
244  }
245  }
246 
247  for (int i = 0; i < thread_num; i++){
248  pthread_join(thread_param[i].thread, NULL);
249  }
250 
251  //release memory
252  av_freep(&thread_param);
253 
254  return ret;
255 #else
256  thread_param.thread_common_param = &thread_common_param;
257  thread_param.thread_start = pad_size;
258  thread_param.thread_end = height - pad_size;
259  dnn_execute_layer_conv2d_thread(&thread_param);
260 
261  return DNN_SUCCESS;
262 #endif
263 }
pthread_join
static av_always_inline int pthread_join(pthread_t thread, void **value_ptr)
Definition: os2threads.h:94
NONE
@ NONE
Definition: af_afade.c:54
thread.h
ThreadParam::thread_common_param
ThreadCommonParam * thread_common_param
Definition: dnn_backend_native_layer_conv2d.c:39
output
filter_frame For filters that do not use the this method is called when a frame is pushed to the filter s input It can be called at any time except in a reentrant way If the input frame is enough to produce output
Definition: filter_design.txt:225
ConvolutionalParams::kernel
float * kernel
Definition: dnn_backend_native_layer_conv2d.h:33
tmp
static uint8_t tmp[11]
Definition: aes_ctr.c:26
ThreadParam::thread_end
int thread_end
Definition: dnn_backend_native_layer_conv2d.c:40
FFMAX
#define FFMAX(a, b)
Definition: macros.h:47
av_malloc
#define av_malloc(s)
Definition: tableprint_vlc.h:31
ThreadParam
Definition: dnn_backend_native_layer_conv2d.c:38
av_int2float
static av_always_inline float av_int2float(uint32_t i)
Reinterpret a 32-bit integer as a float.
Definition: intfloat.h:40
DNN_SUCCESS
@ DNN_SUCCESS
Definition: dnn_interface.h:33
ff_calculate_operand_data_length
int32_t ff_calculate_operand_data_length(const DnnOperand *oprd)
Definition: dnn_backend_native.c:499
SIGMOID
@ SIGMOID
Definition: dnn_backend_native.h:55
ff_dnn_load_layer_conv2d
int ff_dnn_load_layer_conv2d(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num)
Load the 2D Convolution Layer.
Definition: dnn_backend_native_layer_conv2d.c:46
avassert.h
AV_LOG_ERROR
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:180
ConvolutionalParams::input_num
int32_t input_num
Definition: dnn_backend_native_layer_conv2d.h:28
width
#define width
TANH
@ TANH
Definition: dnn_backend_native.h:55
DnnOperand::data
void * data
data pointer with data length in bytes.
Definition: dnn_backend_native.h:104
av_assert0
#define av_assert0(cond)
assert() equivalent, that is always enabled.
Definition: avassert.h:37
DnnOperand::data_type
DNNDataType data_type
support different kinds of data type such as float, half float, int8 etc, first support float now.
Definition: dnn_backend_native.h:85
ConvolutionalParams::activation
DNNActivationFunc activation
Definition: dnn_backend_native_layer_conv2d.h:29
ctx
AVFormatContext * ctx
Definition: movenc.c:48
SAME_CLAMP_TO_EDGE
@ SAME_CLAMP_TO_EDGE
Definition: dnn_backend_native.h:54
f
#define f(width, name)
Definition: cbs_vp9.c:255
pthread_create
static av_always_inline int pthread_create(pthread_t *thread, const pthread_attr_t *attr, void *(*start_routine)(void *), void *arg)
Definition: os2threads.h:80
ConvolutionalParams::has_bias
int32_t has_bias
Definition: dnn_backend_native_layer_conv2d.h:32
Layer::params
void * params
Definition: dnn_backend_native.h:66
NULL
#define NULL
Definition: coverity.c:32
av_realloc
void * av_realloc(void *ptr, size_t size)
Allocate, reallocate, or free a block of memory.
Definition: mem.c:152
ff_dnn_execute_layer_conv2d
int ff_dnn_execute_layer_conv2d(DnnOperand *operands, const int32_t *input_operand_indexes, int32_t output_operand_index, const void *parameters, NativeContext *ctx)
Execute the 2D Convolution Layer.
Definition: dnn_backend_native_layer_conv2d.c:187
DnnOperand::dims
int32_t dims[4]
there are two memory layouts, NHWC or NCHW, so we use dims, dims[0] is Number.
Definition: dnn_backend_native.h:74
exp
int8_t exp
Definition: eval.c:72
ConvolutionalParams::kernel_size
int32_t kernel_size
Definition: dnn_backend_native_layer_conv2d.h:28
DnnOperand::length
int32_t length
Definition: dnn_backend_native.h:105
av_cpu_count
int av_cpu_count(void)
Definition: cpu.c:191
avio_rl32
unsigned int avio_rl32(AVIOContext *s)
Definition: aviobuf.c:759
ThreadParam::thread_start
int thread_start
Definition: dnn_backend_native_layer_conv2d.c:40
AVIOContext
Bytestream IO Context.
Definition: avio.h:161
Layer::output_operand_index
int32_t output_operand_index
Definition: dnn_backend_native.h:65
NativeContext
Definition: dnn_backend_native.h:118
dnn_execute_layer_conv2d_thread
static void * dnn_execute_layer_conv2d_thread(void *threadarg)
Definition: dnn_backend_native_layer_conv2d.c:111
Layer
Definition: dnn_backend_native.h:57
cpu.h
Layer::input_operand_indexes
int32_t input_operand_indexes[4]
a layer can have multiple inputs and one output.
Definition: dnn_backend_native.h:64
VALID
@ VALID
Definition: dnn_backend_native.h:54
dnn_backend_native_layer_conv2d.h
height
#define height
pthread_t
Definition: os2threads.h:44
input
and forward the test the status of outputs and forward it to the corresponding return FFERROR_NOT_READY If the filters stores internally one or a few frame for some input
Definition: filter_design.txt:172
RELU
@ RELU
Definition: dnn_backend_native.h:55
ThreadCommonParam
Definition: dnn_backend_native_layer_conv2d.c:29
ConvolutionalParams::output_num
int32_t output_num
Definition: dnn_backend_native_layer_conv2d.h:28
i
#define i(width, name, range_min, range_max)
Definition: cbs_h2645.c:271
av_malloc_array
#define av_malloc_array(a, b)
Definition: tableprint_vlc.h:32
FFMIN
#define FFMIN(a, b)
Definition: macros.h:49
DNN_ERROR
@ DNN_ERROR
Definition: dnn_interface.h:33
CLAMP_TO_EDGE
#define CLAMP_TO_EDGE(x, w)
Definition: dnn_backend_native_layer_conv2d.c:26
ret
ret
Definition: filter_design.txt:187
ConvolutionalParams::padding_method
DNNPaddingParam padding_method
Definition: dnn_backend_native_layer_conv2d.h:30
ThreadCommonParam::output_operand_index
int32_t output_operand_index
Definition: dnn_backend_native_layer_conv2d.c:32
ThreadCommonParam::ctx
NativeContext * ctx
Definition: dnn_backend_native_layer_conv2d.c:34
DnnOperand
Definition: dnn_backend_native.h:69
ThreadCommonParam::output_data
float * output_data
Definition: dnn_backend_native_layer_conv2d.c:35
ThreadCommonParam::input_operand_indexes
const int32_t * input_operand_indexes
Definition: dnn_backend_native_layer_conv2d.c:31
LEAKY_RELU
@ LEAKY_RELU
Definition: dnn_backend_native.h:55
ThreadCommonParam::parameters
const void * parameters
Definition: dnn_backend_native_layer_conv2d.c:33
av_freep
#define av_freep(p)
Definition: tableprint_vlc.h:35
int32_t
int32_t
Definition: audioconvert.c:56
av_log
#define av_log(a,...)
Definition: tableprint_vlc.h:28
ThreadCommonParam::operands
DnnOperand * operands
Definition: dnn_backend_native_layer_conv2d.c:30
channel
channel
Definition: ebur128.h:39
ConvolutionalParams
Definition: dnn_backend_native_layer_conv2d.h:27
ConvolutionalParams::dilation
int32_t dilation
Definition: dnn_backend_native_layer_conv2d.h:31
ConvolutionalParams::biases
float * biases
Definition: dnn_backend_native_layer_conv2d.h:34