Go to the documentation of this file.
28 #define POS(x, y) src[(x) + stride * (y)]
31 int log2_size,
int c_idx)
34 ((x) >> s->ps.sps->log2_min_pu_size)
36 (s->ref->tab_mvf[(x) + (y) * min_pu_width])
37 #define MVF_PU(x, y) \
38 MVF(PU(x0 + ((x) * (1 << hshift))), PU(y0 + ((y) * (1 << vshift))))
39 #define IS_INTRA(x, y) \
40 (MVF_PU(x, y).pred_flag == PF_INTRA)
41 #define MIN_TB_ADDR_ZS(x, y) \
42 s->ps.pps->min_tb_addr_zs[(y) * (s->ps.sps->tb_mask+2) + (x)]
43 #define EXTEND(ptr, val, len) \
45 pixel4 pix = PIXEL_SPLAT_X4(val); \
46 for (i = 0; i < (len); i += 4) \
47 AV_WN4P(ptr + i, pix); \
50 #define EXTEND_RIGHT_CIP(ptr, start, length) \
51 for (i = start; i < (start) + (length); i += 4) \
52 if (!IS_INTRA(i, -1)) \
53 AV_WN4P(&ptr[i], a); \
55 a = PIXEL_SPLAT_X4(ptr[i+3])
56 #define EXTEND_LEFT_CIP(ptr, start, length) \
57 for (i = start; i > (start) - (length); i--) \
58 if (!IS_INTRA(i - 1, -1)) \
60 #define EXTEND_UP_CIP(ptr, start, length) \
61 for (i = (start); i > (start) - (length); i -= 4) \
62 if (!IS_INTRA(-1, i - 3)) \
63 AV_WN4P(&ptr[i - 3], a); \
65 a = PIXEL_SPLAT_X4(ptr[i - 3])
66 #define EXTEND_DOWN_CIP(ptr, start, length) \
67 for (i = start; i < (start) + (length); i += 4) \
68 if (!IS_INTRA(-1, i)) \
69 AV_WN4P(&ptr[i], a); \
71 a = PIXEL_SPLAT_X4(ptr[i + 3])
75 int hshift =
s->ps.sps->hshift[c_idx];
76 int vshift =
s->ps.sps->vshift[c_idx];
77 int size = (1 << log2_size);
78 int size_in_luma_h =
size << hshift;
79 int size_in_tbs_h = size_in_luma_h >>
s->ps.sps->log2_min_tb_size;
80 int size_in_luma_v =
size << vshift;
81 int size_in_tbs_v = size_in_luma_v >>
s->ps.sps->log2_min_tb_size;
84 int x_tb = (x0 >>
s->ps.sps->log2_min_tb_size) &
s->ps.sps->tb_mask;
85 int y_tb = (y0 >>
s->ps.sps->log2_min_tb_size) &
s->ps.sps->tb_mask;
86 int spin = c_idx && !size_in_tbs_v && ((2 * y0) & (1 <<
s->ps.sps->log2_min_tb_size));
90 ptrdiff_t
stride =
s->frame->linesize[c_idx] /
sizeof(
pixel);
93 int min_pu_width =
s->ps.sps->min_pu_width;
96 lc->tu.intra_pred_mode;
104 pixel *top = top_array + 1;
105 pixel *filtered_left = filtered_left_array + 1;
106 pixel *filtered_top = filtered_top_array + 1;
107 int cand_bottom_left = lc->na.cand_bottom_left && cur_tb_addr >
MIN_TB_ADDR_ZS( x_tb - 1, (y_tb + size_in_tbs_v + spin) &
s->ps.sps->tb_mask);
108 int cand_left = lc->na.cand_left;
109 int cand_up_left = lc->na.cand_up_left;
110 int cand_up = lc->na.cand_up;
111 int cand_up_right = lc->na.cand_up_right && !spin && cur_tb_addr >
MIN_TB_ADDR_ZS((x_tb + size_in_tbs_h) &
s->ps.sps->tb_mask, y_tb - 1);
113 int bottom_left_size = (
FFMIN(y0 + 2 * size_in_luma_v,
s->ps.sps->height) -
114 (y0 + size_in_luma_v)) >> vshift;
115 int top_right_size = (
FFMIN(x0 + 2 * size_in_luma_h,
s->ps.sps->width) -
116 (x0 + size_in_luma_h)) >> hshift;
118 if (
s->ps.pps->constrained_intra_pred_flag == 1) {
119 int size_in_luma_pu_v =
PU(size_in_luma_v);
120 int size_in_luma_pu_h =
PU(size_in_luma_h);
121 int on_pu_edge_x = !
av_mod_uintp2(x0,
s->ps.sps->log2_min_pu_size);
122 int on_pu_edge_y = !
av_mod_uintp2(y0,
s->ps.sps->log2_min_pu_size);
123 if (!size_in_luma_pu_h)
125 if (cand_bottom_left == 1 && on_pu_edge_x) {
126 int x_left_pu =
PU(x0 - 1);
127 int y_bottom_pu =
PU(y0 + size_in_luma_v);
128 int max =
FFMIN(size_in_luma_pu_v,
s->ps.sps->min_pu_height - y_bottom_pu);
129 cand_bottom_left = 0;
130 for (
i = 0;
i <
max;
i += 2)
131 cand_bottom_left |= (
MVF(x_left_pu, y_bottom_pu +
i).pred_flag ==
PF_INTRA);
133 if (cand_left == 1 && on_pu_edge_x) {
134 int x_left_pu =
PU(x0 - 1);
135 int y_left_pu =
PU(y0);
136 int max =
FFMIN(size_in_luma_pu_v,
s->ps.sps->min_pu_height - y_left_pu);
138 for (
i = 0;
i <
max;
i += 2)
139 cand_left |= (
MVF(x_left_pu, y_left_pu +
i).pred_flag ==
PF_INTRA);
141 if (cand_up_left == 1) {
142 int x_left_pu =
PU(x0 - 1);
143 int y_top_pu =
PU(y0 - 1);
144 cand_up_left =
MVF(x_left_pu, y_top_pu).pred_flag ==
PF_INTRA;
146 if (cand_up == 1 && on_pu_edge_y) {
147 int x_top_pu =
PU(x0);
148 int y_top_pu =
PU(y0 - 1);
149 int max =
FFMIN(size_in_luma_pu_h,
s->ps.sps->min_pu_width - x_top_pu);
151 for (
i = 0;
i <
max;
i += 2)
152 cand_up |= (
MVF(x_top_pu +
i, y_top_pu).pred_flag ==
PF_INTRA);
154 if (cand_up_right == 1 && on_pu_edge_y) {
155 int y_top_pu =
PU(y0 - 1);
156 int x_right_pu =
PU(x0 + size_in_luma_h);
157 int max =
FFMIN(size_in_luma_pu_h,
s->ps.sps->min_pu_width - x_right_pu);
159 for (
i = 0;
i <
max;
i += 2)
160 cand_up_right |= (
MVF(x_right_pu +
i, y_top_pu).pred_flag ==
PF_INTRA);
175 size - top_right_size);
180 if (cand_bottom_left) {
184 size - bottom_left_size);
187 if (
s->ps.pps->constrained_intra_pred_flag == 1) {
188 if (cand_bottom_left || cand_left || cand_up_left || cand_up || cand_up_right) {
189 int size_max_x = x0 + ((2 *
size) << hshift) <
s->ps.sps->width ?
190 2 *
size : (
s->ps.sps->width - x0) >> hshift;
191 int size_max_y = y0 + ((2 *
size) << vshift) <
s->ps.sps->height ?
192 2 *
size : (
s->ps.sps->height - y0) >> vshift;
193 int j =
size + (cand_bottom_left? bottom_left_size: 0) -1;
194 if (!cand_up_right) {
195 size_max_x = x0 + ((
size) << hshift) <
s->ps.sps->width ?
196 size : (
s->ps.sps->width - x0) >> hshift;
198 if (!cand_bottom_left) {
199 size_max_y = y0 + ((
size) << vshift) <
s->ps.sps->height ?
200 size : (
s->ps.sps->height - y0) >> vshift;
202 if (cand_bottom_left || cand_left || cand_up_left) {
207 while (j < size_max_x && !
IS_INTRA(j, -1))
214 while (j < size_max_x && !
IS_INTRA(j, -1))
223 if (cand_bottom_left || cand_left) {
229 if (!cand_bottom_left)
231 if (x0 != 0 && y0 != 0) {
236 }
else if (x0 == 0) {
250 if (!cand_bottom_left) {
253 }
else if (cand_up_left) {
256 }
else if (cand_up) {
261 }
else if (cand_up_right) {
288 if (!
s->ps.sps->intra_smoothing_disabled_flag && (c_idx == 0 ||
s->ps.sps->chroma_format_idc == 3)) {
290 int intra_hor_ver_dist_thresh[] = { 7, 1, 0 };
293 if (min_dist_vert_hor > intra_hor_ver_dist_thresh[log2_size - 3]) {
295 if (
s->ps.sps->sps_strong_intra_smoothing_enable_flag && c_idx == 0 &&
297 FFABS(top[-1] + top[63] - 2 * top[31]) < threshold &&
301 filtered_top[-1] = top[-1];
302 filtered_top[63] = top[63];
303 for (
i = 0;
i < 63;
i++)
304 filtered_top[
i] = ((64 - (
i + 1)) * top[-1] +
305 (
i + 1) * top[63] + 32) >> 6;
306 for (
i = 0;
i < 63;
i++)
308 (
i + 1) *
left[63] + 32) >> 6;
312 filtered_top[2 *
size - 1] = top[2 *
size - 1];
313 for (
i = 2 *
size - 2;
i >= 0;
i--)
315 left[
i - 1] + 2) >> 2;
317 filtered_left[-1] = (
left[0] + 2 *
left[-1] + top[0] + 2) >> 2;
318 for (
i = 2 *
size - 2;
i >= 0;
i--)
319 filtered_top[
i] = (top[
i + 1] + 2 * top[
i] +
320 top[
i - 1] + 2) >> 2;
321 left = filtered_left;
330 s->hpc.pred_planar[log2_size - 2]((uint8_t *)
src, (uint8_t *)top,
334 s->hpc.pred_dc((uint8_t *)
src, (uint8_t *)top,
338 s->hpc.pred_angular[log2_size - 2]((uint8_t *)
src, (uint8_t *)top,
345 #define INTRA_PRED(size) \
346 static void FUNC(intra_pred_ ## size)(HEVCLocalContext *lc, int x0, int y0, int c_idx) \
348 FUNC(intra_pred)(lc, x0, y0, size, c_idx); \
359 const uint8_t *_left, ptrdiff_t
stride,
366 int size = 1 << trafo_size;
367 for (y = 0; y <
size; y++)
368 for (x = 0; x <
size; x++)
373 #define PRED_PLANAR(size)\
374 static void FUNC(pred_planar_ ## size)(uint8_t *src, const uint8_t *top, \
375 const uint8_t *left, ptrdiff_t stride) \
377 FUNC(pred_planar)(src, top, left, stride, size + 2); \
388 const uint8_t *_left,
389 ptrdiff_t
stride,
int log2_size,
int c_idx)
392 int size = (1 << log2_size);
401 dc >>= log2_size + 1;
406 for (j = 0; j <
size; j+=4)
409 if (c_idx == 0 &&
size < 32) {
410 POS(0, 0) = (
left[0] + 2 *
dc + top[0] + 2) >> 2;
411 for (x = 1; x <
size; x++)
412 POS(x, 0) = (top[x] + 3 *
dc + 2) >> 2;
413 for (y = 1; y <
size; y++)
420 const uint8_t *_left,
421 ptrdiff_t
stride,
int c_idx,
429 static const int intra_pred_angle[] = {
430 32, 26, 21, 17, 13, 9, 5, 2, 0, -2, -5, -9, -13, -17, -21, -26, -32,
431 -26, -21, -17, -13, -9, -5, -2, 0, 2, 5, 9, 13, 17, 21, 26, 32
433 static const int inv_angle[] = {
434 -4096, -1638, -910, -630, -482, -390, -315, -256, -315, -390, -482,
435 -630, -910, -1638, -4096
438 int angle = intra_pred_angle[
mode - 2];
442 int last = (
size * angle) >> 5;
446 if (angle < 0 && last < -1) {
447 for (x = 0; x <=
size; x += 4)
449 for (x = last; x <= -1; x++)
450 ref_tmp[x] =
left[-1 + ((x * inv_angle[
mode - 11] + 128) >> 8)];
454 for (y = 0; y <
size; y++) {
455 int idx = ((y + 1) * angle) >> 5;
456 int fact = ((y + 1) * angle) & 31;
458 for (x = 0; x <
size; x += 4) {
459 POS(x , y) = ((32 -
fact) *
ref[x + idx + 1] +
460 fact *
ref[x + idx + 2] + 16) >> 5;
461 POS(x + 1, y) = ((32 -
fact) *
ref[x + 1 + idx + 1] +
462 fact *
ref[x + 1 + idx + 2] + 16) >> 5;
463 POS(x + 2, y) = ((32 -
fact) *
ref[x + 2 + idx + 1] +
464 fact *
ref[x + 2 + idx + 2] + 16) >> 5;
465 POS(x + 3, y) = ((32 -
fact) *
ref[x + 3 + idx + 1] +
466 fact *
ref[x + 3 + idx + 2] + 16) >> 5;
469 for (x = 0; x <
size; x += 4)
473 if (
mode == 26 && c_idx == 0 &&
size < 32) {
474 for (y = 0; y <
size; y++)
479 if (angle < 0 && last < -1) {
480 for (x = 0; x <=
size; x += 4)
482 for (x = last; x <= -1; x++)
483 ref_tmp[x] = top[-1 + ((x * inv_angle[
mode - 11] + 128) >> 8)];
487 for (x = 0; x <
size; x++) {
488 int idx = ((x + 1) * angle) >> 5;
489 int fact = ((x + 1) * angle) & 31;
491 for (y = 0; y <
size; y++) {
493 fact *
ref[y + idx + 2] + 16) >> 5;
496 for (y = 0; y <
size; y++)
497 POS(x, y) =
ref[y + idx + 1];
500 if (
mode == 10 && c_idx == 0 &&
size < 32) {
501 for (x = 0; x <
size; x += 4) {
539 #undef EXTEND_LEFT_CIP
540 #undef EXTEND_RIGHT_CIP
542 #undef EXTEND_DOWN_CIP
548 #undef MIN_TB_ADDR_ZS
#define EXTEND_UP_CIP(ptr, start, length)
static av_always_inline void FUNC() pred_angular(uint8_t *_src, const uint8_t *_top, const uint8_t *_left, ptrdiff_t stride, int c_idx, int mode, int size)
#define EXTEND_LEFT_CIP(ptr, start, length)
static av_always_inline void FUNC() pred_planar(uint8_t *_src, const uint8_t *_top, const uint8_t *_left, ptrdiff_t stride, int trafo_size)
#define PIXEL_SPLAT_X4(x)
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
static void FUNC() pred_angular_1(uint8_t *src, const uint8_t *top, const uint8_t *left, ptrdiff_t stride, int c_idx, int mode)
Tag MUST be and< 10hcoeff half pel interpolation filter coefficients, hcoeff[0] are the 2 middle coefficients[1] are the next outer ones and so on, resulting in a filter like:...eff[2], hcoeff[1], hcoeff[0], hcoeff[0], hcoeff[1], hcoeff[2] ... the sign of the coefficients is not explicitly stored but alternates after each coeff and coeff[0] is positive, so ...,+,-,+,-,+,+,-,+,-,+,... hcoeff[0] is not explicitly stored but found by subtracting the sum of all stored coefficients with signs from 32 hcoeff[0]=32 - hcoeff[1] - hcoeff[2] - ... a good choice for hcoeff and htaps is htaps=6 hcoeff={40,-10, 2} an alternative which requires more computations at both encoder and decoder side and may or may not be better is htaps=8 hcoeff={42,-14, 6,-2}ref_frames minimum of the number of available reference frames and max_ref_frames for example the first frame after a key frame always has ref_frames=1spatial_decomposition_type wavelet type 0 is a 9/7 symmetric compact integer wavelet 1 is a 5/3 symmetric compact integer wavelet others are reserved stored as delta from last, last is reset to 0 if always_reset||keyframeqlog quality(logarithmic quantizer scale) stored as delta from last, last is reset to 0 if always_reset||keyframemv_scale stored as delta from last, last is reset to 0 if always_reset||keyframe FIXME check that everything works fine if this changes between framesqbias dequantization bias stored as delta from last, last is reset to 0 if always_reset||keyframeblock_max_depth maximum depth of the block tree stored as delta from last, last is reset to 0 if always_reset||keyframequant_table quantization tableHighlevel bitstream structure:==============================--------------------------------------------|Header|--------------------------------------------|------------------------------------|||Block0||||split?||||yes no||||......... intra?||||:Block01 :yes no||||:Block02 :....... ..........||||:Block03 ::y DC ::ref index:||||:Block04 ::cb DC ::motion x :||||......... :cr DC ::motion y :||||....... ..........|||------------------------------------||------------------------------------|||Block1|||...|--------------------------------------------|------------ ------------ ------------|||Y subbands||Cb subbands||Cr subbands||||--- ---||--- ---||--- ---|||||LL0||HL0||||LL0||HL0||||LL0||HL0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||LH0||HH0||||LH0||HH0||||LH0||HH0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HL1||LH1||||HL1||LH1||||HL1||LH1|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HH1||HL2||||HH1||HL2||||HH1||HL2|||||...||...||...|||------------ ------------ ------------|--------------------------------------------Decoding process:=================------------|||Subbands|------------||||------------|Intra DC||||LL0 subband prediction ------------|\ Dequantization ------------------- \||Reference frames|\ IDWT|------- -------|Motion \|||Frame 0||Frame 1||Compensation . OBMC v -------|------- -------|--------------. \------> Frame n output Frame Frame<----------------------------------/|...|------------------- Range Coder:============Binary Range Coder:------------------- The implemented range coder is an adapted version based upon "Range encoding: an algorithm for removing redundancy from a digitised message." by G. N. N. Martin. The symbols encoded by the Snow range coder are bits(0|1). The associated probabilities are not fix but change depending on the symbol mix seen so far. bit seen|new state ---------+----------------------------------------------- 0|256 - state_transition_table[256 - old_state];1|state_transition_table[old_state];state_transition_table={ 0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 190, 191, 192, 194, 194, 195, 196, 197, 198, 199, 200, 201, 202, 202, 204, 205, 206, 207, 208, 209, 209, 210, 211, 212, 213, 215, 215, 216, 217, 218, 219, 220, 220, 222, 223, 224, 225, 226, 227, 227, 229, 229, 230, 231, 232, 234, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 248, 0, 0, 0, 0, 0, 0, 0};FIXME Range Coding of integers:------------------------- FIXME Neighboring Blocks:===================left and top are set to the respective blocks unless they are outside of the image in which case they are set to the Null block top-left is set to the top left block unless it is outside of the image in which case it is set to the left block if this block has no larger parent block or it is at the left side of its parent block and the top right block is not outside of the image then the top right block is used for top-right else the top-left block is used Null block y, cb, cr are 128 level, ref, mx and my are 0 Motion Vector Prediction:=========================1. the motion vectors of all the neighboring blocks are scaled to compensate for the difference of reference frames scaled_mv=(mv *(256 *(current_reference+1)/(mv.reference+1))+128)> the median of the scaled top and top right vectors is used as motion vector prediction the used motion vector is the sum of the predictor and(mvx_diff, mvy_diff) *mv_scale Intra DC Prediction block[y][x] dc[1]
static void FUNC() pred_angular_0(uint8_t *src, const uint8_t *top, const uint8_t *left, ptrdiff_t stride, int c_idx, int mode)
The reader does not expect b to be semantically here and if the code is changed by maybe adding a a division or other the signedness will almost certainly be mistaken To avoid this confusion a new type was SUINT is the C unsigned type but it holds a signed int to use the same example SUINT a
static double fact(double i)
#define i(width, name, range_min, range_max)
#define MIN_TB_ADDR_ZS(x, y)
#define EXTEND_RIGHT_CIP(ptr, start, length)
Tag MUST be and< 10hcoeff half pel interpolation filter coefficients, hcoeff[0] are the 2 middle coefficients[1] are the next outer ones and so on, resulting in a filter like:...eff[2], hcoeff[1], hcoeff[0], hcoeff[0], hcoeff[1], hcoeff[2] ... the sign of the coefficients is not explicitly stored but alternates after each coeff and coeff[0] is positive, so ...,+,-,+,-,+,+,-,+,-,+,... hcoeff[0] is not explicitly stored but found by subtracting the sum of all stored coefficients with signs from 32 hcoeff[0]=32 - hcoeff[1] - hcoeff[2] - ... a good choice for hcoeff and htaps is htaps=6 hcoeff={40,-10, 2} an alternative which requires more computations at both encoder and decoder side and may or may not be better is htaps=8 hcoeff={42,-14, 6,-2}ref_frames minimum of the number of available reference frames and max_ref_frames for example the first frame after a key frame always has ref_frames=1spatial_decomposition_type wavelet type 0 is a 9/7 symmetric compact integer wavelet 1 is a 5/3 symmetric compact integer wavelet others are reserved stored as delta from last, last is reset to 0 if always_reset||keyframeqlog quality(logarithmic quantizer scale) stored as delta from last, last is reset to 0 if always_reset||keyframemv_scale stored as delta from last, last is reset to 0 if always_reset||keyframe FIXME check that everything works fine if this changes between framesqbias dequantization bias stored as delta from last, last is reset to 0 if always_reset||keyframeblock_max_depth maximum depth of the block tree stored as delta from last, last is reset to 0 if always_reset||keyframequant_table quantization tableHighlevel bitstream structure:==============================--------------------------------------------|Header|--------------------------------------------|------------------------------------|||Block0||||split?||||yes no||||......... intra?||||:Block01 :yes no||||:Block02 :....... ..........||||:Block03 ::y DC ::ref index:||||:Block04 ::cb DC ::motion x :||||......... :cr DC ::motion y :||||....... ..........|||------------------------------------||------------------------------------|||Block1|||...|--------------------------------------------|------------ ------------ ------------|||Y subbands||Cb subbands||Cr subbands||||--- ---||--- ---||--- ---|||||LL0||HL0||||LL0||HL0||||LL0||HL0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||LH0||HH0||||LH0||HH0||||LH0||HH0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HL1||LH1||||HL1||LH1||||HL1||LH1|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HH1||HL2||||HH1||HL2||||HH1||HL2|||||...||...||...|||------------ ------------ ------------|--------------------------------------------Decoding process:=================------------|||Subbands|------------||||------------|Intra DC||||LL0 subband prediction ------------|\ Dequantization ------------------- \||Reference frames|\ IDWT|------- -------|Motion \|||Frame 0||Frame 1||Compensation . OBMC v -------|------- -------|--------------. \------> Frame n output Frame Frame<----------------------------------/|...|------------------- Range Coder:============Binary Range Coder:------------------- The implemented range coder is an adapted version based upon "Range encoding: an algorithm for removing redundancy from a digitised message." by G. N. N. Martin. The symbols encoded by the Snow range coder are bits(0|1). The associated probabilities are not fix but change depending on the symbol mix seen so far. bit seen|new state ---------+----------------------------------------------- 0|256 - state_transition_table[256 - old_state];1|state_transition_table[old_state];state_transition_table={ 0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 190, 191, 192, 194, 194, 195, 196, 197, 198, 199, 200, 201, 202, 202, 204, 205, 206, 207, 208, 209, 209, 210, 211, 212, 213, 215, 215, 216, 217, 218, 219, 220, 220, 222, 223, 224, 225, 226, 227, 227, 229, 229, 230, 231, 232, 234, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 248, 0, 0, 0, 0, 0, 0, 0};FIXME Range Coding of integers:------------------------- FIXME Neighboring Blocks:===================left and top are set to the respective blocks unless they are outside of the image in which case they are set to the Null block top-left is set to the top left block unless it is outside of the image in which case it is set to the left block if this block has no larger parent block or it is at the left side of its parent block and the top right block is not outside of the image then the top right block is used for top-right else the top-left block is used Null block y, cb, cr are 128 level, ref, mx and my are 0 Motion Vector Prediction:=========================1. the motion vectors of all the neighboring blocks are scaled to compensate for the difference of reference frames scaled_mv=(mv *(256 *(current_reference+1)/(mv.reference+1))+128)> the median of the scaled left
static av_always_inline void FUNC() intra_pred(HEVCLocalContext *lc, int x0, int y0, int log2_size, int c_idx)
static void FUNC() pred_angular_3(uint8_t *src, const uint8_t *top, const uint8_t *left, ptrdiff_t stride, int c_idx, int mode)
static int ref[MAX_W *MAX_W]
#define PRED_PLANAR(size)
#define EXTEND(ptr, val, len)
static void FUNC() pred_angular_2(uint8_t *src, const uint8_t *top, const uint8_t *left, ptrdiff_t stride, int c_idx, int mode)
static void FUNC() pred_dc(uint8_t *_src, const uint8_t *_top, const uint8_t *_left, ptrdiff_t stride, int log2_size, int c_idx)
#define EXTEND_DOWN_CIP(ptr, start, length)