Go to the documentation of this file.
36 #define CFACTOR_Y422 2
37 #define CFACTOR_Y444 3
39 #define MAX_MBS_PER_SLICE 8
65 4, 7, 9, 11, 13, 14, 15, 63,
66 7, 7, 11, 12, 14, 15, 63, 63,
67 9, 11, 13, 14, 15, 63, 63, 63,
68 11, 11, 13, 14, 63, 63, 63, 63,
69 11, 13, 14, 63, 63, 63, 63, 63,
70 13, 14, 63, 63, 63, 63, 63, 63,
71 13, 63, 63, 63, 63, 63, 63, 63,
72 63, 63, 63, 63, 63, 63, 63, 63,
75 4, 7, 9, 11, 13, 14, 63, 63,
76 7, 7, 11, 12, 14, 63, 63, 63,
77 9, 11, 13, 14, 63, 63, 63, 63,
78 11, 11, 13, 14, 63, 63, 63, 63,
79 11, 13, 14, 63, 63, 63, 63, 63,
80 13, 14, 63, 63, 63, 63, 63, 63,
81 13, 63, 63, 63, 63, 63, 63, 63,
82 63, 63, 63, 63, 63, 63, 63, 63
85 4, 5, 6, 7, 9, 11, 13, 15,
86 5, 5, 7, 8, 11, 13, 15, 17,
87 6, 7, 9, 11, 13, 15, 15, 17,
88 7, 7, 9, 11, 13, 15, 17, 19,
89 7, 9, 11, 13, 14, 16, 19, 23,
90 9, 11, 13, 14, 16, 19, 23, 29,
91 9, 11, 13, 15, 17, 21, 28, 35,
92 11, 13, 16, 17, 21, 28, 35, 41,
95 4, 4, 5, 5, 6, 7, 7, 9,
96 4, 4, 5, 6, 7, 7, 9, 9,
97 5, 5, 6, 7, 7, 9, 9, 10,
98 5, 5, 6, 7, 7, 9, 9, 10,
99 5, 6, 7, 7, 8, 9, 10, 12,
100 6, 7, 7, 8, 9, 10, 12, 15,
101 6, 7, 7, 9, 10, 11, 14, 17,
102 7, 7, 9, 10, 11, 14, 17, 21,
105 4, 4, 4, 4, 4, 4, 4, 4,
106 4, 4, 4, 4, 4, 4, 4, 4,
107 4, 4, 4, 4, 4, 4, 4, 4,
108 4, 4, 4, 4, 4, 4, 4, 5,
109 4, 4, 4, 4, 4, 4, 5, 5,
110 4, 4, 4, 4, 4, 5, 5, 6,
111 4, 4, 4, 4, 5, 5, 6, 7,
112 4, 4, 4, 4, 5, 6, 7, 7,
115 2, 2, 2, 2, 2, 2, 2, 2,
116 2, 2, 2, 2, 2, 2, 2, 2,
117 2, 2, 2, 2, 2, 2, 2, 2,
118 2, 2, 2, 2, 2, 2, 2, 3,
119 2, 2, 2, 2, 2, 2, 3, 3,
120 2, 2, 2, 2, 2, 3, 3, 3,
121 2, 2, 2, 2, 3, 3, 3, 4,
122 2, 2, 2, 2, 3, 3, 4, 4,
125 4, 4, 4, 4, 4, 4, 4, 4,
126 4, 4, 4, 4, 4, 4, 4, 4,
127 4, 4, 4, 4, 4, 4, 4, 4,
128 4, 4, 4, 4, 4, 4, 4, 4,
129 4, 4, 4, 4, 4, 4, 4, 4,
130 4, 4, 4, 4, 4, 4, 4, 4,
131 4, 4, 4, 4, 4, 4, 4, 4,
132 4, 4, 4, 4, 4, 4, 4, 4,
136 #define NUM_MB_LIMITS 4
155 .tag =
MKTAG(
'a',
'p',
'c',
'o'),
158 .br_tab = { 300, 242, 220, 194 },
164 .tag =
MKTAG(
'a',
'p',
'c',
's'),
167 .br_tab = { 720, 560, 490, 440 },
172 .full_name =
"standard",
173 .tag =
MKTAG(
'a',
'p',
'c',
'n'),
176 .br_tab = { 1050, 808, 710, 632 },
181 .full_name =
"high quality",
182 .tag =
MKTAG(
'a',
'p',
'c',
'h'),
185 .br_tab = { 1566, 1216, 1070, 950 },
191 .tag =
MKTAG(
'a',
'p',
'4',
'h'),
194 .br_tab = { 2350, 1828, 1600, 1425 },
199 .full_name =
"4444XQ",
200 .tag =
MKTAG(
'a',
'p',
'4',
'x'),
203 .br_tab = { 3525, 2742, 2400, 2137 },
209 #define TRELLIS_WIDTH 16
210 #define SCORE_LIMIT INT_MAX / 2
219 #define MAX_STORED_Q 16
242 ptrdiff_t linesize, int16_t *
block);
273 ptrdiff_t linesize,
int x,
int y,
int w,
int h,
274 int16_t *blocks, uint16_t *emu_buf,
275 int mbs_per_slice,
int blocks_per_mb,
int is_chroma)
277 const uint16_t *esrc;
278 const int mb_width = 4 * blocks_per_mb;
282 for (
i = 0;
i < mbs_per_slice;
i++,
src += mb_width) {
284 memset(blocks, 0, 64 * (mbs_per_slice -
i) * blocks_per_mb
288 if (x + mb_width <=
w && y + 16 <=
h) {
290 elinesize = linesize;
295 elinesize = 16 *
sizeof(*emu_buf);
297 bw =
FFMIN(
w - x, mb_width);
300 for (j = 0; j < bh; j++) {
301 memcpy(emu_buf + j * 16,
302 (
const uint8_t*)
src + j * linesize,
304 pix = emu_buf[j * 16 + bw - 1];
305 for (k = bw; k < mb_width; k++)
306 emu_buf[j * 16 + k] = pix;
309 memcpy(emu_buf + j * 16,
310 emu_buf + (bh - 1) * 16,
311 mb_width *
sizeof(*emu_buf));
314 ctx->fdct(&
ctx->fdsp, esrc, elinesize, blocks);
316 if (blocks_per_mb > 2) {
317 ctx->fdct(&
ctx->fdsp, esrc + 8, elinesize, blocks);
320 ctx->fdct(&
ctx->fdsp, esrc + elinesize * 4, elinesize, blocks);
322 if (blocks_per_mb > 2) {
323 ctx->fdct(&
ctx->fdsp, esrc + elinesize * 4 + 8, elinesize, blocks);
327 ctx->fdct(&
ctx->fdsp, esrc, elinesize, blocks);
329 ctx->fdct(&
ctx->fdsp, esrc + elinesize * 4, elinesize, blocks);
331 if (blocks_per_mb > 2) {
332 ctx->fdct(&
ctx->fdsp, esrc + 8, elinesize, blocks);
334 ctx->fdct(&
ctx->fdsp, esrc + elinesize * 4 + 8, elinesize, blocks);
344 ptrdiff_t linesize,
int x,
int y,
int w,
int h,
345 uint16_t *blocks,
int mbs_per_slice,
int abits)
347 const int slice_width = 16 * mbs_per_slice;
348 int i, j, copy_w, copy_h;
350 copy_w =
FFMIN(
w - x, slice_width);
351 copy_h =
FFMIN(
h - y, 16);
352 for (
i = 0;
i < copy_h;
i++) {
353 memcpy(blocks,
src, copy_w *
sizeof(*
src));
355 for (j = 0; j < copy_w; j++)
358 for (j = 0; j < copy_w; j++)
359 blocks[j] = (blocks[j] << 6) | (blocks[j] >> 4);
360 for (j = copy_w; j < slice_width; j++)
361 blocks[j] = blocks[copy_w - 1];
362 blocks += slice_width;
363 src += linesize >> 1;
365 for (;
i < 16;
i++) {
366 memcpy(blocks, blocks - slice_width, slice_width *
sizeof(*blocks));
367 blocks += slice_width;
376 unsigned int rice_order, exp_order, switch_bits, switch_val;
384 switch_val = switch_bits << rice_order;
386 if (
val >= switch_val) {
387 val -= switch_val - (1 << exp_order);
390 put_bits(pb, exponent - exp_order + switch_bits, 0);
393 exponent =
val >> rice_order;
403 #define GET_SIGN(x) ((x) >> 31)
404 #define MAKE_CODE(x) (((x) * 2) ^ GET_SIGN(x))
407 int blocks_per_slice,
int scale)
412 prev_dc = (blocks[0] - 0x4000) /
scale;
417 for (
i = 1;
i < blocks_per_slice;
i++, blocks += 64) {
418 dc = (blocks[0] - 0x4000) /
scale;
431 int blocks_per_slice,
432 const uint8_t *scan,
const int16_t *qmat)
438 int max_coeffs, abs_level;
440 max_coeffs = blocks_per_slice << 6;
442 for (
i = 1;
i < 64;
i++) {
443 for (idx = scan[
i]; idx < max_coeffs; idx += 64) {
444 level = blocks[idx] / qmat[scan[
i]];
452 prev_level =
FFMIN(abs_level, 9);
462 const uint16_t *
src, ptrdiff_t linesize,
463 int mbs_per_slice, int16_t *blocks,
467 int blocks_per_slice = mbs_per_slice * blocks_per_mb;
469 encode_dcs(pb, blocks, blocks_per_slice, qmat[0]);
470 encode_acs(pb, blocks, blocks_per_slice,
ctx->scantable, qmat);
475 const int dbits = (abits == 8) ? 4 : 7;
476 const int dsize = 1 << dbits - 1;
477 int diff = cur - prev;
480 if (
diff >= (1 << abits) - dsize)
482 if (diff < -dsize || diff > dsize || !
diff) {
507 int mbs_per_slice, uint16_t *blocks,
510 const int abits =
ctx->alpha_bits;
511 const int mask = (1 << abits) - 1;
512 const int num_coeffs = mbs_per_slice * 256;
513 int prev =
mask, cur;
530 }
while (idx < num_coeffs);
543 int num_cblocks, pwidth, line_add;
547 uint16_t *qmat_chroma;
549 if (
ctx->pictures_per_frame == 1)
554 if (
ctx->force_quant) {
555 qmat =
ctx->quants[0];
556 qmat_chroma =
ctx->quants_chroma[0];
559 qmat_chroma =
ctx->quants_chroma[
quant];
561 qmat =
ctx->custom_q;
562 qmat_chroma =
ctx->custom_chroma_q;
563 for (
i = 0;
i < 64;
i++) {
565 qmat_chroma[
i] =
ctx->quant_chroma_mat[
i] *
quant;
569 for (
i = 0;
i <
ctx->num_planes;
i++) {
570 is_chroma = (
i == 1 ||
i == 2);
575 pwidth = avctx->
width;
580 pwidth = avctx->
width >> 1;
584 src = (
const uint16_t*)(pic->
data[
i] + yp * linesize +
589 pwidth, avctx->
height /
ctx->pictures_per_frame,
590 ctx->blocks[0],
ctx->emu_buf,
591 mbs_per_slice, num_cblocks, is_chroma);
594 mbs_per_slice,
ctx->blocks[0],
598 mbs_per_slice,
ctx->blocks[0],
599 num_cblocks, qmat_chroma);
603 pwidth, avctx->
height /
ctx->pictures_per_frame,
604 ctx->blocks[0], mbs_per_slice,
ctx->alpha_bits);
616 unsigned int rice_order, exp_order, switch_bits, switch_val;
624 switch_val = switch_bits << rice_order;
626 if (
val >= switch_val) {
627 val -= switch_val - (1 << exp_order);
630 return exponent * 2 - exp_order + switch_bits + 1;
632 return (
val >> rice_order) + rice_order + 1;
643 prev_dc = (blocks[0] - 0x4000) /
scale;
649 for (
i = 1;
i < blocks_per_slice;
i++, blocks += 64) {
650 dc = (blocks[0] - 0x4000) /
scale;
666 const uint8_t *scan,
const int16_t *qmat)
672 int max_coeffs, abs_level;
675 max_coeffs = blocks_per_slice << 6;
678 for (
i = 1;
i < 64;
i++) {
679 for (idx = scan[
i]; idx < max_coeffs; idx += 64) {
680 level = blocks[idx] / qmat[scan[
i]];
689 prev_level =
FFMIN(abs_level, 9);
701 const uint16_t *
src, ptrdiff_t linesize,
706 int blocks_per_slice;
709 blocks_per_slice = mbs_per_slice * blocks_per_mb;
719 const int dbits = (abits == 8) ? 4 : 7;
720 const int dsize = 1 << dbits - 1;
721 int diff = cur - prev;
724 if (
diff >= (1 << abits) - dsize)
726 if (diff < -dsize || diff > dsize || !
diff)
733 const uint16_t *
src, ptrdiff_t linesize,
734 int mbs_per_slice, int16_t *blocks)
736 const int abits =
ctx->alpha_bits;
737 const int mask = (1 << abits) - 1;
738 const int num_coeffs = mbs_per_slice * 256;
739 int prev =
mask, cur;
762 }
while (idx < num_coeffs);
775 int trellis_node,
int x,
int y,
int mbs_per_slice,
779 int i, q, pq, xp, yp;
786 int mbs, prev, cur, new_score;
790 uint16_t *qmat_chroma;
791 int linesize[4], line_add;
794 if (
ctx->pictures_per_frame == 1)
798 mbs = x + mbs_per_slice;
800 for (
i = 0;
i <
ctx->num_planes;
i++) {
801 is_chroma[
i] = (
i == 1 ||
i == 2);
806 pwidth = avctx->
width;
811 pwidth = avctx->
width >> 1;
814 linesize[
i] =
ctx->pic->linesize[
i] *
ctx->pictures_per_frame;
815 src = (
const uint16_t *)(
ctx->pic->data[
i] + yp * linesize[
i] +
816 line_add *
ctx->pic->linesize[
i]) + xp;
820 pwidth, avctx->
height /
ctx->pictures_per_frame,
821 td->blocks[
i],
td->emu_buf,
822 mbs_per_slice, num_cblocks[
i], is_chroma[
i]);
825 pwidth, avctx->
height /
ctx->pictures_per_frame,
826 td->blocks[
i], mbs_per_slice,
ctx->alpha_bits);
831 td->nodes[trellis_node + q].prev_node = -1;
832 td->nodes[trellis_node + q].quant = q;
837 mbs_per_slice,
td->blocks[3]);
847 for (
i = 1;
i <
ctx->num_planes - !!
ctx->alpha_bits;
i++) {
852 ctx->quants_chroma[q],
td);
854 if (
bits > 65000 * 8)
857 slice_bits[q] =
bits;
858 slice_score[q] =
error;
860 if (slice_bits[
max_quant] <=
ctx->bits_per_mb * mbs_per_slice) {
869 qmat =
ctx->quants[q];
870 qmat_chroma =
ctx->quants_chroma[q];
873 qmat_chroma =
td->custom_chroma_q;
874 for (
i = 0;
i < 64;
i++) {
875 qmat[
i] =
ctx->quant_mat[
i] * q;
876 qmat_chroma[
i] =
ctx->quant_chroma_mat[
i] * q;
884 for (
i = 1;
i <
ctx->num_planes - !!
ctx->alpha_bits;
i++) {
891 if (bits <= ctx->bits_per_mb * mbs_per_slice)
899 td->nodes[trellis_node +
max_quant + 1].quant = overquant;
901 bits_limit = mbs *
ctx->bits_per_mb;
906 cur = trellis_node + q;
908 bits =
td->nodes[prev].bits + slice_bits[q];
909 error = slice_score[q];
910 if (
bits > bits_limit)
914 new_score =
td->nodes[prev].score +
error;
917 if (
td->nodes[cur].prev_node == -1 ||
918 td->nodes[cur].score >= new_score) {
920 td->nodes[cur].bits =
bits;
921 td->nodes[cur].score = new_score;
922 td->nodes[cur].prev_node = prev;
930 if (
td->nodes[trellis_node + q].score <=
error) {
931 error =
td->nodes[trellis_node + q].score;
932 pq = trellis_node + q;
940 int jobnr,
int threadnr)
944 int mbs_per_slice =
ctx->mbs_per_slice;
945 int x, y = jobnr,
mb, q = 0;
947 for (x =
mb = 0; x <
ctx->mb_width; x += mbs_per_slice,
mb++) {
948 while (
ctx->mb_width - x < mbs_per_slice)
955 for (x =
ctx->slices_width - 1; x >= 0; x--) {
956 ctx->slice_q[x + y *
ctx->slices_width] =
td->nodes[q].quant;
957 q =
td->nodes[q].prev_node;
964 const AVFrame *pic,
int *got_packet)
967 uint8_t *orig_buf, *buf, *slice_hdr, *slice_sizes, *
tmp;
968 uint8_t *picture_size_pos;
970 int x, y,
i,
mb, q = 0;
971 int sizes[4] = { 0 };
972 int slice_hdr_size = 2 + 2 * (
ctx->num_planes - 1);
975 int max_slice_size = (
ctx->frame_size_upper_bound - 200) / (
ctx->pictures_per_frame *
ctx->slices_per_picture + 1);
979 pkt_size =
ctx->frame_size_upper_bound;
988 bytestream_put_be32 (&orig_buf,
FRAME_ID);
994 bytestream_put_be16 (&buf,
ctx->chroma_factor !=
CFACTOR_Y422 ||
ctx->alpha_bits ? 1 : 0);
996 bytestream_put_be16 (&buf, avctx->
width);
997 bytestream_put_be16 (&buf, avctx->
height);
999 frame_flags =
ctx->chroma_factor << 6;
1002 bytestream_put_byte (&buf, frame_flags);
1004 bytestream_put_byte (&buf, 0);
1006 bytestream_put_byte (&buf, pic->
color_trc);
1008 bytestream_put_byte (&buf,
ctx->alpha_bits >> 3);
1009 bytestream_put_byte (&buf, 0);
1011 bytestream_put_byte (&buf, 0x03);
1015 bytestream_put_byte (&buf, 0x00);
1017 bytestream_put_be16 (&
tmp, buf - orig_buf);
1019 for (
ctx->cur_picture_idx = 0;
1020 ctx->cur_picture_idx <
ctx->pictures_per_frame;
1021 ctx->cur_picture_idx++) {
1023 picture_size_pos = buf + 1;
1024 bytestream_put_byte (&buf, 0x40);
1026 bytestream_put_be16 (&buf,
ctx->slices_per_picture);
1027 bytestream_put_byte (&buf,
av_log2(
ctx->mbs_per_slice) << 4);
1031 buf +=
ctx->slices_per_picture * 2;
1034 if (!
ctx->force_quant) {
1041 for (y = 0; y <
ctx->mb_height; y++) {
1042 int mbs_per_slice =
ctx->mbs_per_slice;
1043 for (x =
mb = 0; x <
ctx->mb_width; x += mbs_per_slice,
mb++) {
1044 q =
ctx->force_quant ?
ctx->force_quant
1045 :
ctx->slice_q[
mb + y *
ctx->slices_width];
1047 while (
ctx->mb_width - x < mbs_per_slice)
1048 mbs_per_slice >>= 1;
1050 bytestream_put_byte(&buf, slice_hdr_size << 3);
1052 buf += slice_hdr_size - 1;
1053 if (pkt_size <= buf - orig_buf + 2 * max_slice_size) {
1057 int delta = 200 + (
ctx->pictures_per_frame *
1058 ctx->slices_per_picture + 1) *
1059 max_slice_size - pkt_size;
1062 ctx->frame_size_upper_bound +=
delta;
1066 "Packet too small: is %i,"
1067 " needs %i (slice: %i). "
1068 "Correct allocation",
1069 pkt_size,
delta, max_slice_size);
1079 orig_buf =
pkt->
data + (orig_buf - start);
1080 buf =
pkt->
data + (buf - start);
1081 picture_size_pos =
pkt->
data + (picture_size_pos - start);
1082 slice_sizes =
pkt->
data + (slice_sizes - start);
1083 slice_hdr =
pkt->
data + (slice_hdr - start);
1092 bytestream_put_byte(&slice_hdr, q);
1093 slice_size = slice_hdr_size +
sizes[
ctx->num_planes - 1];
1094 for (
i = 0;
i <
ctx->num_planes - 1;
i++) {
1095 bytestream_put_be16(&slice_hdr,
sizes[
i]);
1098 bytestream_put_be16(&slice_sizes, slice_size);
1099 buf += slice_size - slice_hdr_size;
1100 if (max_slice_size < slice_size)
1101 max_slice_size = slice_size;
1105 picture_size = buf - (picture_size_pos - 1);
1106 bytestream_put_be32(&picture_size_pos, picture_size);
1135 ptrdiff_t linesize, int16_t *
block)
1138 const uint16_t *tsrc =
src;
1140 for (y = 0; y < 8; y++) {
1141 for (x = 0; x < 8; x++)
1142 block[y * 8 + x] = tsrc[x];
1143 tsrc += linesize >> 1;
1163 mps =
ctx->mbs_per_slice;
1164 if (mps & (mps - 1)) {
1166 "there should be an integer power of two MBs per slice\n");
1172 !(
desc->log2_chroma_w +
desc->log2_chroma_h))
1176 ?
"4:4:4:4 profile because of the used input colorspace"
1177 :
"HQ profile to keep best quality");
1184 "encode alpha. Override with -profile if needed.\n");
1185 ctx->alpha_bits = 0;
1187 if (
ctx->alpha_bits & 7) {
1193 ctx->alpha_bits = 0;
1200 ctx->num_planes = 3 + !!
ctx->alpha_bits;
1209 ctx->slices_width =
ctx->mb_width / mps;
1211 ctx->slices_per_picture =
ctx->mb_height *
ctx->slices_width;
1214 if (
ctx->quant_sel == -1) {
1222 if (strlen(
ctx->vendor) != 4) {
1228 if (!
ctx->force_quant) {
1229 if (!
ctx->bits_per_mb) {
1232 ctx->pictures_per_frame)
1234 ctx->bits_per_mb =
ctx->profile_info->br_tab[
i];
1235 if (
ctx->alpha_bits)
1236 ctx->bits_per_mb *= 20;
1237 }
else if (
ctx->bits_per_mb < 128) {
1245 for (j = 0; j < 64; j++) {
1246 ctx->quants[
i][j] =
ctx->quant_mat[j] *
i;
1247 ctx->quants_chroma[
i][j] =
ctx->quant_chroma_mat[j] *
i;
1262 *
sizeof(*
ctx->tdata->nodes));
1263 if (!
ctx->tdata[j].nodes)
1266 ctx->tdata[j].nodes[
i].prev_node = -1;
1267 ctx->tdata[j].nodes[
i].bits = 0;
1268 ctx->tdata[j].nodes[
i].score = 0;
1275 if (
ctx->force_quant > 64) {
1280 for (j = 0; j < 64; j++) {
1281 ctx->quants[0][j] =
ctx->quant_mat[j] *
ctx->force_quant;
1282 ctx->quants_chroma[0][j] =
ctx->quant_chroma_mat[j] *
ctx->force_quant;
1283 ls +=
av_log2((1 << 11) /
ctx->quants[0][j]) * 2 + 1;
1284 ls_chroma +=
av_log2((1 << 11) /
ctx->quants_chroma[0][j]) * 2 + 1;
1287 ctx->bits_per_mb = ls * 4 + ls_chroma * 4;
1289 ctx->bits_per_mb += ls_chroma * 4;
1292 ctx->frame_size_upper_bound = (
ctx->pictures_per_frame *
1293 ctx->slices_per_picture + 1) *
1294 (2 + 2 *
ctx->num_planes +
1295 (mps *
ctx->bits_per_mb) / 8)
1298 if (
ctx->alpha_bits) {
1300 ctx->frame_size_upper_bound += (
ctx->pictures_per_frame *
1301 ctx->slices_per_picture + 1) *
1302 (
ctx->mbs_per_slice * 256 *
1303 (1 +
ctx->alpha_bits + 1) + 7 >> 3);
1310 "profile %d, %d slices, interlacing: %s, %d bits per MB\n",
1311 ctx->profile,
ctx->slices_per_picture *
ctx->pictures_per_frame,
1314 ctx->frame_size_upper_bound);
1319 #define OFFSET(x) offsetof(ProresContext, x)
1320 #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
1323 {
"mbs_per_slice",
"macroblocks per slice",
OFFSET(mbs_per_slice),
1329 0, 0,
VE, .unit =
"profile" },
1331 0, 0,
VE, .unit =
"profile" },
1333 0, 0,
VE, .unit =
"profile" },
1335 0, 0,
VE, .unit =
"profile" },
1337 0, 0,
VE, .unit =
"profile" },
1339 0, 0,
VE, .unit =
"profile" },
1341 0, 0,
VE, .unit =
"profile" },
1342 {
"vendor",
"vendor ID",
OFFSET(vendor),
1344 {
"bits_per_mb",
"desired bits per macroblock",
OFFSET(bits_per_mb),
1349 0, 0,
VE, .unit =
"quant_mat" },
1351 0, 0,
VE, .unit =
"quant_mat" },
1353 0, 0,
VE, .unit =
"quant_mat" },
1355 0, 0,
VE, .unit =
"quant_mat" },
1357 0, 0,
VE, .unit =
"quant_mat" },
1359 0, 0,
VE, .unit =
"quant_mat" },
1361 { .i64 = 16 }, 0, 16,
VE },
1373 .
p.
name =
"prores_ks",
static void error(const char *err)
const uint8_t * quant_chroma_mat
enum AVColorTransferCharacteristic color_trc
#define AV_LOG_WARNING
Something somehow does not look correct.
static int estimate_dcs(int *error, int16_t *blocks, int blocks_per_slice, int scale)
AVPixelFormat
Pixel format.
#define FF_CODEC_CAP_INIT_CLEANUP
The codec allows calling the close function for deallocation even if the init function returned a fai...
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
static void encode_dcs(PutBitContext *pb, int16_t *blocks, int blocks_per_slice, int scale)
static int put_bytes_output(const PutBitContext *s)
static int encode_frame(AVCodecContext *avctx, AVPacket *pkt, const AVFrame *pic, int *got_packet)
const AVProfile ff_prores_profiles[]
const AVPixFmtDescriptor * av_pix_fmt_desc_get(enum AVPixelFormat pix_fmt)
int av_grow_packet(AVPacket *pkt, int grow_by)
Increase packet size, correctly zeroing padding.
static void put_sbits(PutBitContext *pb, int n, int32_t value)
static void init_put_bits(PutBitContext *s, uint8_t *buffer, int buffer_size)
Initialize the PutBitContext s.
enum AVColorPrimaries color_primaries
int16_t quants_chroma[MAX_STORED_Q][64]
static int estimate_slice_plane(ProresContext *ctx, int *error, int plane, const uint16_t *src, ptrdiff_t linesize, int mbs_per_slice, int blocks_per_mb, const int16_t *qmat, ProresThreadData *td)
enum AVColorSpace colorspace
YUV colorspace type.
This structure describes decoded (raw) audio or video data.
static void put_bits(Jpeg2000EncoderContext *s, int val, int n)
put n times val bit
static void encode_alpha_plane(ProresContext *ctx, PutBitContext *pb, int mbs_per_slice, uint16_t *blocks, int quant)
const FFCodec ff_prores_ks_encoder
int flags
Frame flags, a combination of AV_FRAME_FLAGS.
static void put_alpha_run(PutBitContext *pb, int run)
const uint8_t ff_prores_progressive_scan[64]
const uint8_t ff_prores_level_to_cb[10]
static const uint8_t prores_quant_matrices[][64]
#define FF_INPUT_BUFFER_MIN_SIZE
Used by some encoders as upper bound for the length of headers.
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
#define AV_FRAME_FLAG_TOP_FIELD_FIRST
A flag to mark frames where the top field is displayed first if the content is interlaced.
static void prores_fdct(FDCTDSPContext *fdsp, const uint16_t *src, ptrdiff_t linesize, int16_t *block)
const struct prores_profile * profile_info
AVCodec p
The public AVCodec.
int thread_count
thread count is used to decide how many independent tasks should be passed to execute()
static void get_alpha_data(ProresContext *ctx, const uint16_t *src, ptrdiff_t linesize, int x, int y, int w, int h, uint16_t *blocks, int mbs_per_slice, int abits)
static const int prores_mb_limits[NUM_MB_LIMITS]
int flags
AV_CODEC_FLAG_*.
int16_t custom_chroma_q[64]
static double val(void *priv, double ch)
static void put_alpha_diff(PutBitContext *pb, int cur, int prev, int abits)
static int estimate_alpha_plane(ProresContext *ctx, const uint16_t *src, ptrdiff_t linesize, int mbs_per_slice, int16_t *blocks)
#define FF_CODEC_ENCODE_CB(func)
struct TrellisNode * nodes
#define AV_CODEC_FLAG_INTERLACED_DCT
Use interlaced DCT.
static void encode_slice_plane(ProresContext *ctx, PutBitContext *pb, const uint16_t *src, ptrdiff_t linesize, int mbs_per_slice, int16_t *blocks, int blocks_per_mb, const int16_t *qmat)
#define AV_PIX_FMT_YUV444P10
static const uint8_t quant[64]
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
av_cold void ff_fdctdsp_init(FDCTDSPContext *c, AVCodecContext *avctx)
static const struct prores_profile prores_profile_info[6]
static const uint16_t mask[17]
int16_t custom_chroma_q[64]
int global_quality
Global quality for codecs which cannot change it per frame.
int flags
Flags modifying the (de)muxer behaviour.
#define AV_CODEC_CAP_ENCODER_REORDERED_OPAQUE
This encoder can reorder user opaque values from input AVFrames and return them with corresponding ou...
int bits_per_raw_sample
Bits per sample/pixel of internal libavcodec pixel/sample format.
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
#define AV_PIX_FMT_FLAG_ALPHA
The pixel format has an alpha channel.
int16_t quants[MAX_STORED_Q][64]
const uint8_t ff_prores_interlaced_scan[64]
static int find_quant_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr)
#define CODEC_LONG_NAME(str)
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
#define AV_CODEC_CAP_FRAME_THREADS
Codec supports frame-level multithreading.
#define MAX_MBS_PER_SLICE
#define LIBAVUTIL_VERSION_INT
Describe the class of an AVClass context structure.
const uint8_t ff_prores_run_to_cb[16]
static const int sizes[][2]
static av_cold int encode_init(AVCodecContext *avctx)
const char * av_default_item_name(void *ptr)
Return the context name.
static int find_slice_quant(AVCodecContext *avctx, int trellis_node, int x, int y, int mbs_per_slice, ProresThreadData *td)
@ PRORES_PROFILE_STANDARD
#define AV_PIX_FMT_YUV422P10
uint64_t flags
Combination of AV_PIX_FMT_FLAG_...
int16_t blocks[MAX_PLANES][64 *4 *MAX_MBS_PER_SLICE]
int br_tab[NUM_MB_LIMITS]
int(* init)(AVBSFContext *ctx)
static void scale(int *out, const int *in, const int w, const int h, const int shift)
Tag MUST be and< 10hcoeff half pel interpolation filter coefficients, hcoeff[0] are the 2 middle coefficients[1] are the next outer ones and so on, resulting in a filter like:...eff[2], hcoeff[1], hcoeff[0], hcoeff[0], hcoeff[1], hcoeff[2] ... the sign of the coefficients is not explicitly stored but alternates after each coeff and coeff[0] is positive, so ...,+,-,+,-,+,+,-,+,-,+,... hcoeff[0] is not explicitly stored but found by subtracting the sum of all stored coefficients with signs from 32 hcoeff[0]=32 - hcoeff[1] - hcoeff[2] - ... a good choice for hcoeff and htaps is htaps=6 hcoeff={40,-10, 2} an alternative which requires more computations at both encoder and decoder side and may or may not be better is htaps=8 hcoeff={42,-14, 6,-2}ref_frames minimum of the number of available reference frames and max_ref_frames for example the first frame after a key frame always has ref_frames=1spatial_decomposition_type wavelet type 0 is a 9/7 symmetric compact integer wavelet 1 is a 5/3 symmetric compact integer wavelet others are reserved stored as delta from last, last is reset to 0 if always_reset||keyframeqlog quality(logarithmic quantizer scale) stored as delta from last, last is reset to 0 if always_reset||keyframemv_scale stored as delta from last, last is reset to 0 if always_reset||keyframe FIXME check that everything works fine if this changes between framesqbias dequantization bias stored as delta from last, last is reset to 0 if always_reset||keyframeblock_max_depth maximum depth of the block tree stored as delta from last, last is reset to 0 if always_reset||keyframequant_table quantization tableHighlevel bitstream structure:==============================--------------------------------------------|Header|--------------------------------------------|------------------------------------|||Block0||||split?||||yes no||||......... intra?||||:Block01 :yes no||||:Block02 :....... ..........||||:Block03 ::y DC ::ref index:||||:Block04 ::cb DC ::motion x :||||......... :cr DC ::motion y :||||....... ..........|||------------------------------------||------------------------------------|||Block1|||...|--------------------------------------------|------------ ------------ ------------|||Y subbands||Cb subbands||Cr subbands||||--- ---||--- ---||--- ---|||||LL0||HL0||||LL0||HL0||||LL0||HL0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||LH0||HH0||||LH0||HH0||||LH0||HH0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HL1||LH1||||HL1||LH1||||HL1||LH1|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HH1||HL2||||HH1||HL2||||HH1||HL2|||||...||...||...|||------------ ------------ ------------|--------------------------------------------Decoding process:=================------------|||Subbands|------------||||------------|Intra DC||||LL0 subband prediction ------------|\ Dequantization ------------------- \||Reference frames|\ IDWT|------- -------|Motion \|||Frame 0||Frame 1||Compensation . OBMC v -------|------- -------|--------------. \------> Frame n output Frame Frame<----------------------------------/|...|------------------- Range Coder:============Binary Range Coder:------------------- The implemented range coder is an adapted version based upon "Range encoding: an algorithm for removing redundancy from a digitised message." by G. N. N. Martin. The symbols encoded by the Snow range coder are bits(0|1). The associated probabilities are not fix but change depending on the symbol mix seen so far. bit seen|new state ---------+----------------------------------------------- 0|256 - state_transition_table[256 - old_state];1|state_transition_table[old_state];state_transition_table={ 0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 190, 191, 192, 194, 194, 195, 196, 197, 198, 199, 200, 201, 202, 202, 204, 205, 206, 207, 208, 209, 209, 210, 211, 212, 213, 215, 215, 216, 217, 218, 219, 220, 220, 222, 223, 224, 225, 226, 227, 227, 229, 229, 230, 231, 232, 234, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 248, 0, 0, 0, 0, 0, 0, 0};FIXME Range Coding of integers:------------------------- FIXME Neighboring Blocks:===================left and top are set to the respective blocks unless they are outside of the image in which case they are set to the Null block top-left is set to the top left block unless it is outside of the image in which case it is set to the left block if this block has no larger parent block or it is at the left side of its parent block and the top right block is not outside of the image then the top right block is used for top-right else the top-left block is used Null block y, cb, cr are 128 level, ref, mx and my are 0 Motion Vector Prediction:=========================1. the motion vectors of all the neighboring blocks are scaled to compensate for the difference of reference frames scaled_mv=(mv *(256 *(current_reference+1)/(mv.reference+1))+128)> the median of the scaled top and top right vectors is used as motion vector prediction the used motion vector is the sum of the predictor and(mvx_diff, mvy_diff) *mv_scale Intra DC Prediction block[y][x] dc[1]
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
const uint8_t * scantable
#define DECLARE_ALIGNED(n, t, v)
static av_always_inline int diff(const struct color_info *a, const struct color_info *b, const int trans_thresh)
static int estimate_acs(int *error, int16_t *blocks, int blocks_per_slice, const uint8_t *scan, const int16_t *qmat)
#define AV_CODEC_CAP_SLICE_THREADS
Codec supports slice-based (or partition-based) multithreading.
#define AV_PIX_FMT_YUVA444P10
const uint8_t ff_prores_dc_codebook[7]
#define AV_LOG_INFO
Standard information.
int bits_per_coded_sample
bits per sample/pixel from the demuxer (needed for huffyuv).
static const AVOption options[]
static av_always_inline void bytestream_put_buffer(uint8_t **b, const uint8_t *src, unsigned int size)
#define i(width, name, range_min, range_max)
and forward the test the status of outputs and forward it to the corresponding return FFERROR_NOT_READY If the filters stores internally one or a few frame for some it can consider them to be part of the FIFO and delay acknowledging a status change accordingly Example code
static void get_slice_data(ProresContext *ctx, const uint16_t *src, ptrdiff_t linesize, int x, int y, int w, int h, int16_t *blocks, uint16_t *emu_buf, int mbs_per_slice, int blocks_per_mb, int is_chroma)
int frame_size_upper_bound
int16_t blocks[MAX_PLANES][64 *4 *MAX_MBS_PER_SLICE]
#define av_malloc_array(a, b)
static void encode_acs(PutBitContext *pb, int16_t *blocks, int blocks_per_slice, const uint8_t *scan, const int16_t *qmat)
static int est_alpha_diff(int cur, int prev, int abits)
const char * name
Name of the codec implementation.
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
void * av_calloc(size_t nmemb, size_t size)
static const AVClass proresenc_class
const char * class_name
The name of the class; usually it is the same name as the context structure type to which the AVClass...
const uint8_t * quant_mat
main external API structure.
void(* fdct)(int16_t *block)
#define avpriv_request_sample(...)
static int estimate_vlc(unsigned codebook, int val)
static void flush_put_bits(PutBitContext *s)
Pad the end of the output stream with zeros.
Descriptor that unambiguously describes how the bits of a pixel are stored in the up to 4 data planes...
static int encode_slice(AVCodecContext *avctx, const AVFrame *pic, PutBitContext *pb, int sizes[4], int x, int y, int quant, int mbs_per_slice)
unsigned int codec_tag
fourcc (LSB first, so "ABCD" -> ('D'<<24) + ('C'<<16) + ('B'<<8) + 'A').
This structure stores compressed data.
static void encode_vlc_codeword(PutBitContext *pb, unsigned codebook, int val)
Write an unsigned rice/exp golomb codeword.
int width
picture width / height.
int linesize[AV_NUM_DATA_POINTERS]
For video, a positive or negative value, which is typically indicating the size in bytes of each pict...
The exact code depends on how similar the blocks are and how related they are to the block
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
void(* fdct)(FDCTDSPContext *fdsp, const uint16_t *src, ptrdiff_t linesize, int16_t *block)
#define MKTAG(a, b, c, d)
#define FF_QP2LAMBDA
factor to convert from H.263 QP to lambda
int(* execute2)(struct AVCodecContext *c, int(*func)(struct AVCodecContext *c2, void *arg, int jobnr, int threadnr), void *arg2, int *ret, int count)
The codec may call this to execute several independent things.
int ff_alloc_packet(AVCodecContext *avctx, AVPacket *avpkt, int64_t size)
Check AVPacket size and allocate data.
static av_cold int encode_close(AVCodecContext *avctx)
static const unsigned codebook[256][2]
unsigned mb_height
height of the current picture in mb