Go to the documentation of this file.
94 const uint8_t *syms,
int *
offset)
96 int counts[17] = {0}, codes[17];
107 codes[0] = counts[0] = 0;
108 for (
int i = 0;
i < 16;
i++) {
109 codes[
i+1] = (codes[
i] + counts[
i]) << 1;
141 for(j = 0; j < 2; j++){
148 for(k = 0; k < 4; k++){
153 for(j = 0; j < 4; j++){
164 for(j = 0; j < 4; j++){
168 for(j = 0; j < 2; j++){
193 int pattern,
code, cbp=0;
195 static const int cbp_masks[3] = {0x100000, 0x010000, 0x110000};
196 static const int shifts[4] = { 0, 2, 8, 10 };
197 const int *curshift =
shifts;
201 pattern =
code & 0xF;
211 for(
i = 0;
i < 4;
i++){
216 cbp |= cbp_masks[2] <<
i;
232 coef = 22 + ((1 << coef) |
get_bits(gb, coef));
238 *dst = (coef*q + 8) >> 4;
273 int q_dc,
int q_ac1,
int q_ac2)
295 int fc,
int sc,
int q_dc,
int q_ac1,
int q_ac2)
297 int code, pattern, has_ac = 1;
301 pattern =
code & 0x7;
326 return has_ac | pattern;
341 for(
i = 0;
i < 5;
i++)
366 int mb_pos =
s->mb_x +
s->mb_y *
s->mb_stride;
374 fill_rectangle(intra_types, 4, 4,
r->intra_types_stride, t,
sizeof(intra_types[0]));
383 if(
r->decode_intra_types(
r, gb, intra_types) < 0)
401 int mb_pos =
s->mb_x +
s->mb_y *
s->mb_stride;
404 r->block_type =
r->decode_mb_info(
r);
405 if(
r->block_type == -1)
408 r->mb_type[mb_pos] =
r->block_type;
419 fill_rectangle(intra_types, 4, 4,
r->intra_types_stride, 0,
sizeof(intra_types[0]));
425 if(
IS_INTRA(
s->current_picture_ptr->mb_type[mb_pos])){
428 fill_rectangle(intra_types, 4, 4,
r->intra_types_stride, t,
sizeof(intra_types[0]));
431 if(
r->decode_intra_types(
r, gb, intra_types) < 0)
438 for(
i = 0;
i < 16;
i++)
439 intra_types[(
i & 3) + (
i>>2) *
r->intra_types_stride] = 0;
460 static const uint8_t
part_sizes_w[
RV34_MB_TYPES] = { 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2 };
463 static const uint8_t
part_sizes_h[
RV34_MB_TYPES] = { 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2 };
478 int mv_pos =
s->mb_x * 2 +
s->mb_y * 2 *
s->b8_stride;
479 int A[2] = {0},
B[2],
C[2];
485 mv_pos += (subblock_no & 1) + (subblock_no >> 1)*
s->b8_stride;
490 A[0] =
s->current_picture_ptr->motion_val[0][mv_pos-1][0];
491 A[1] =
s->current_picture_ptr->motion_val[0][mv_pos-1][1];
494 B[0] =
s->current_picture_ptr->motion_val[0][mv_pos-
s->b8_stride][0];
495 B[1] =
s->current_picture_ptr->motion_val[0][mv_pos-
s->b8_stride][1];
501 if(avail[-4] && (avail[-1] ||
r->rv30)){
502 C[0] =
s->current_picture_ptr->motion_val[0][mv_pos-
s->b8_stride-1][0];
503 C[1] =
s->current_picture_ptr->motion_val[0][mv_pos-
s->b8_stride-1][1];
509 C[0] =
s->current_picture_ptr->motion_val[0][mv_pos-
s->b8_stride+c_off][0];
510 C[1] =
s->current_picture_ptr->motion_val[0][mv_pos-
s->b8_stride+c_off][1];
514 mx +=
r->dmv[dmv_no][0];
515 my +=
r->dmv[dmv_no][1];
518 s->current_picture_ptr->motion_val[0][mv_pos +
i + j*
s->b8_stride][0] = mx;
519 s->current_picture_ptr->motion_val[0][mv_pos +
i + j*
s->b8_stride][1] = my;
524 #define GET_PTS_DIFF(a, b) (((a) - (b) + 8192) & 0x1FFF)
531 int mul = dir ? -
r->mv_weight2 :
r->mv_weight1;
533 return (
int)(
val * (
SUINT)mul + 0x2000) >> 14;
540 int A_avail,
int B_avail,
int C_avail,
543 if(A_avail + B_avail + C_avail != 3){
544 *mx =
A[0] +
B[0] +
C[0];
545 *my =
A[1] +
B[1] +
C[1];
546 if(A_avail + B_avail + C_avail == 2){
562 int mb_pos =
s->mb_x +
s->mb_y *
s->mb_stride;
563 int mv_pos =
s->mb_x * 2 +
s->mb_y * 2 *
s->b8_stride;
564 int A[2] = { 0 },
B[2] = { 0 },
C[2] = { 0 };
565 int has_A = 0, has_B = 0, has_C = 0;
568 Picture *cur_pic =
s->current_picture_ptr;
578 B[0] = cur_pic->
motion_val[dir][mv_pos -
s->b8_stride][0];
579 B[1] = cur_pic->
motion_val[dir][mv_pos -
s->b8_stride][1];
582 if(
r->avail_cache[6-4] && (
r->avail_cache[6-2] &
type) &
mask){
583 C[0] = cur_pic->
motion_val[dir][mv_pos -
s->b8_stride + 2][0];
584 C[1] = cur_pic->
motion_val[dir][mv_pos -
s->b8_stride + 2][1];
586 }
else if((
s->mb_x+1) ==
s->mb_width && (
r->avail_cache[6-5] &
type) &
mask){
587 C[0] = cur_pic->
motion_val[dir][mv_pos -
s->b8_stride - 1][0];
588 C[1] = cur_pic->
motion_val[dir][mv_pos -
s->b8_stride - 1][1];
594 mx +=
r->dmv[dir][0];
595 my +=
r->dmv[dir][1];
597 for(j = 0; j < 2; j++){
598 for(
i = 0;
i < 2;
i++){
599 cur_pic->
motion_val[dir][mv_pos +
i + j*
s->b8_stride][0] = mx;
600 cur_pic->
motion_val[dir][mv_pos +
i + j*
s->b8_stride][1] = my;
614 int mv_pos =
s->mb_x * 2 +
s->mb_y * 2 *
s->b8_stride;
615 int A[2] = {0},
B[2],
C[2];
621 A[0] =
s->current_picture_ptr->motion_val[0][mv_pos - 1][0];
622 A[1] =
s->current_picture_ptr->motion_val[0][mv_pos - 1][1];
625 B[0] =
s->current_picture_ptr->motion_val[0][mv_pos -
s->b8_stride][0];
626 B[1] =
s->current_picture_ptr->motion_val[0][mv_pos -
s->b8_stride][1];
632 if(avail[-4] && (avail[-1])){
633 C[0] =
s->current_picture_ptr->motion_val[0][mv_pos -
s->b8_stride - 1][0];
634 C[1] =
s->current_picture_ptr->motion_val[0][mv_pos -
s->b8_stride - 1][1];
640 C[0] =
s->current_picture_ptr->motion_val[0][mv_pos -
s->b8_stride + 2][0];
641 C[1] =
s->current_picture_ptr->motion_val[0][mv_pos -
s->b8_stride + 2][1];
647 for(j = 0; j < 2; j++){
648 for(
i = 0;
i < 2;
i++){
649 for(k = 0; k < 2; k++){
650 s->current_picture_ptr->motion_val[k][mv_pos +
i + j*
s->b8_stride][0] = mx;
651 s->current_picture_ptr->motion_val[k][mv_pos +
i + j*
s->b8_stride][1] = my;
675 const int xoff,
const int yoff,
int mv_off,
677 const int thirdpel,
int weighted,
682 uint8_t *
Y, *
U, *
V, *srcY, *srcU, *srcV;
683 int dxy, mx, my, umx, umy, lx, ly, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
684 int mv_pos =
s->mb_x * 2 +
s->mb_y * 2 *
s->b8_stride + mv_off;
689 int chroma_mx, chroma_my;
690 mx = (
s->current_picture_ptr->motion_val[dir][mv_pos][0] + (3 << 24)) / 3 - (1 << 24);
691 my = (
s->current_picture_ptr->motion_val[dir][mv_pos][1] + (3 << 24)) / 3 - (1 << 24);
692 lx = (
s->current_picture_ptr->motion_val[dir][mv_pos][0] + (3 << 24)) % 3;
693 ly = (
s->current_picture_ptr->motion_val[dir][mv_pos][1] + (3 << 24)) % 3;
694 chroma_mx =
s->current_picture_ptr->motion_val[dir][mv_pos][0] / 2;
695 chroma_my =
s->current_picture_ptr->motion_val[dir][mv_pos][1] / 2;
696 umx = (chroma_mx + (3 << 24)) / 3 - (1 << 24);
697 umy = (chroma_my + (3 << 24)) / 3 - (1 << 24);
702 mx =
s->current_picture_ptr->motion_val[dir][mv_pos][0] >> 2;
703 my =
s->current_picture_ptr->motion_val[dir][mv_pos][1] >> 2;
704 lx =
s->current_picture_ptr->motion_val[dir][mv_pos][0] & 3;
705 ly =
s->current_picture_ptr->motion_val[dir][mv_pos][1] & 3;
706 cx =
s->current_picture_ptr->motion_val[dir][mv_pos][0] / 2;
707 cy =
s->current_picture_ptr->motion_val[dir][mv_pos][1] / 2;
710 uvmx = (cx & 3) << 1;
711 uvmy = (cy & 3) << 1;
713 if(uvmx == 6 && uvmy == 6)
719 int mb_row =
s->mb_y + ((yoff + my + 5 + 8 *
height) >> 4);
720 const ThreadFrame *
f = dir ? &
s->next_picture_ptr->tf : &
s->last_picture_ptr->tf;
725 srcY = dir ?
s->next_picture_ptr->f->data[0] :
s->last_picture_ptr->f->data[0];
726 srcU = dir ?
s->next_picture_ptr->f->data[1] :
s->last_picture_ptr->f->data[1];
727 srcV = dir ?
s->next_picture_ptr->f->data[2] :
s->last_picture_ptr->f->data[2];
728 src_x =
s->mb_x * 16 + xoff + mx;
729 src_y =
s->mb_y * 16 + yoff + my;
730 uvsrc_x =
s->mb_x * 8 + (xoff >> 1) + umx;
731 uvsrc_y =
s->mb_y * 8 + (yoff >> 1) + umy;
732 srcY += src_y *
s->linesize + src_x;
733 srcU += uvsrc_y *
s->uvlinesize + uvsrc_x;
734 srcV += uvsrc_y *
s->uvlinesize + uvsrc_x;
735 if(
s->h_edge_pos - (
width << 3) < 6 ||
s->v_edge_pos - (
height << 3) < 6 ||
736 (
unsigned)(src_x - !!lx*2) >
s->h_edge_pos - !!lx*2 - (
width <<3) - 4 ||
737 (unsigned)(src_y - !!ly*2) >
s->v_edge_pos - !!ly*2 - (
height<<3) - 4) {
738 srcY -= 2 + 2*
s->linesize;
739 s->vdsp.emulated_edge_mc(
s->sc.edge_emu_buffer, srcY,
740 s->linesize,
s->linesize,
742 src_x - 2, src_y - 2,
743 s->h_edge_pos,
s->v_edge_pos);
744 srcY =
s->sc.edge_emu_buffer + 2 + 2*
s->linesize;
748 Y =
s->dest[0] + xoff + yoff *
s->linesize;
749 U =
s->dest[1] + (xoff>>1) + (yoff>>1)*
s->uvlinesize;
750 V =
s->dest[2] + (xoff>>1) + (yoff>>1)*
s->uvlinesize;
752 Y =
r->tmp_b_block_y [dir] + xoff + yoff *
s->linesize;
753 U =
r->tmp_b_block_uv[dir*2] + (xoff>>1) + (yoff>>1)*
s->uvlinesize;
754 V =
r->tmp_b_block_uv[dir*2+1] + (xoff>>1) + (yoff>>1)*
s->uvlinesize;
758 qpel_mc[1][dxy](
Y, srcY,
s->linesize);
762 qpel_mc[1][dxy](
Y, srcY,
s->linesize);
763 Y += 8 *
s->linesize;
764 srcY += 8 *
s->linesize;
767 qpel_mc[!is16x16][dxy](
Y, srcY,
s->linesize);
769 uint8_t *uvbuf =
s->sc.edge_emu_buffer;
771 s->vdsp.emulated_edge_mc(uvbuf, srcU,
772 s->uvlinesize,
s->uvlinesize,
775 s->h_edge_pos >> 1,
s->v_edge_pos >> 1);
777 uvbuf += 9*
s->uvlinesize;
779 s->vdsp.emulated_edge_mc(uvbuf, srcV,
780 s->uvlinesize,
s->uvlinesize,
783 s->h_edge_pos >> 1,
s->v_edge_pos >> 1);
791 const int xoff,
const int yoff,
int mv_off,
794 rv34_mc(
r, block_type, xoff, yoff, mv_off,
width,
height, dir,
r->rv30, 0,
795 r->rdsp.put_pixels_tab,
796 r->rdsp.put_chroma_pixels_tab);
801 r->rdsp.rv40_weight_pixels_tab[
r->scaled_weight][0](
r->s.dest[0],
807 r->rdsp.rv40_weight_pixels_tab[
r->scaled_weight][1](
r->s.dest[1],
808 r->tmp_b_block_uv[0],
809 r->tmp_b_block_uv[2],
813 r->rdsp.rv40_weight_pixels_tab[
r->scaled_weight][1](
r->s.dest[2],
814 r->tmp_b_block_uv[1],
815 r->tmp_b_block_uv[3],
825 rv34_mc(
r, block_type, 0, 0, 0, 2, 2, 0,
r->rv30, weighted,
826 r->rdsp.put_pixels_tab,
827 r->rdsp.put_chroma_pixels_tab);
829 rv34_mc(
r, block_type, 0, 0, 0, 2, 2, 1,
r->rv30, 0,
830 r->rdsp.avg_pixels_tab,
831 r->rdsp.avg_chroma_pixels_tab);
833 rv34_mc(
r, block_type, 0, 0, 0, 2, 2, 1,
r->rv30, 1,
834 r->rdsp.put_pixels_tab,
835 r->rdsp.put_chroma_pixels_tab);
843 int weighted = !
r->rv30 &&
r->weight1 != 8192;
845 for(j = 0; j < 2; j++)
846 for(
i = 0;
i < 2;
i++){
849 r->rdsp.put_pixels_tab,
850 r->rdsp.put_chroma_pixels_tab);
853 weighted ?
r->rdsp.put_pixels_tab :
r->rdsp.avg_pixels_tab,
854 weighted ?
r->rdsp.put_chroma_pixels_tab :
r->rdsp.avg_chroma_pixels_tab);
861 static const int num_mvs[
RV34_MB_TYPES] = { 0, 0, 1, 4, 1, 1, 0, 0, 2, 2, 2, 1 };
872 int mv_pos =
s->mb_x * 2 +
s->mb_y * 2 *
s->b8_stride;
875 memset(
r->dmv, 0,
sizeof(
r->dmv));
881 r->dmv[
i][0] =
r->dmv[
i][1] = 0;
888 ZERO8x2(
s->current_picture_ptr->motion_val[0][
s->mb_x * 2 +
s->mb_y * 2 *
s->b8_stride],
s->b8_stride);
892 ZERO8x2(
s->current_picture_ptr->motion_val[0][
s->mb_x * 2 +
s->mb_y * 2 *
s->b8_stride],
s->b8_stride);
902 next_bt =
s->next_picture_ptr->mb_type[
s->mb_x +
s->mb_y *
s->mb_stride];
904 ZERO8x2(
s->current_picture_ptr->motion_val[0][
s->mb_x * 2 +
s->mb_y * 2 *
s->b8_stride],
s->b8_stride);
905 ZERO8x2(
s->current_picture_ptr->motion_val[1][
s->mb_x * 2 +
s->mb_y * 2 *
s->b8_stride],
s->b8_stride);
907 for(j = 0; j < 2; j++)
908 for(
i = 0;
i < 2;
i++)
909 for(k = 0; k < 2; k++)
910 for(l = 0; l < 2; l++)
911 s->current_picture_ptr->motion_val[l][mv_pos +
i + j*
s->b8_stride][k] =
calc_add_mv(
r, l,
s->next_picture_ptr->motion_val[0][mv_pos +
i + j*
s->b8_stride][k]);
916 ZERO8x2(
s->current_picture_ptr->motion_val[0][
s->mb_x * 2 +
s->mb_y * 2 *
s->b8_stride],
s->b8_stride);
925 r->dmv[1][0] =
r->dmv[0][0];
926 r->dmv[1][1] =
r->dmv[0][1];
954 rv34_mc_1mv (
r, block_type, (
i&1)<<3, (
i&2)<<2, (
i&1)+(
i>>1)*
s->b8_stride, 1, 1, 0);
983 uint8_t *prev = dst -
stride + 4;
1002 topleft = dst[-
stride + 3] * 0x01010101
u;
1003 prev = (uint8_t*)&topleft;
1005 r->h.pred4x4[itype](dst, prev,
stride);
1025 uint8_t *pdst,
int stride,
1026 int fc,
int sc,
int q_dc,
int q_ac)
1029 int16_t *ptr =
s->block[0];
1031 fc, sc, q_dc, q_ac, q_ac);
1033 r->rdsp.rv34_idct_add(pdst,
stride, ptr);
1035 r->rdsp.rv34_idct_dc_add(pdst,
stride, ptr[0]);
1047 uint8_t *dst =
s->dest[0];
1048 int16_t *ptr =
s->block[0];
1049 int i, j, itype, has_ac;
1051 memset(block16, 0, 16 *
sizeof(*block16));
1055 r->rdsp.rv34_inv_transform(block16);
1057 r->rdsp.rv34_inv_transform_dc(block16);
1060 itype =
adjust_pred16(itype,
r->avail_cache[6-4],
r->avail_cache[6-1]);
1061 r->h.pred16x16[itype](dst,
s->linesize);
1063 for(j = 0; j < 4; j++){
1064 for(
i = 0; i < 4; i++, cbp >>= 1){
1065 int dc = block16[
i + j*4];
1074 r->rdsp.rv34_idct_add(dst+4*
i,
s->linesize, ptr);
1076 r->rdsp.rv34_idct_dc_add(dst+4*
i,
s->linesize,
dc);
1079 dst += 4*
s->linesize;
1084 itype =
adjust_pred16(itype,
r->avail_cache[6-4],
r->avail_cache[6-1]);
1089 for(j = 1; j < 3; j++){
1091 r->h.pred8x8[itype](dst,
s->uvlinesize);
1092 for(
i = 0; i < 4; i++, cbp >>= 1){
1094 if(!(cbp & 1))
continue;
1095 pdst = dst + (
i&1)*4 + (
i&2)*2*
s->uvlinesize;
1098 r->chroma_vlc, 1, q_dc, q_ac);
1106 uint8_t *dst =
s->dest[0];
1107 int avail[6*8] = {0};
1109 int idx, q_ac, q_dc;
1112 if(
r->avail_cache[1])
1114 if(
r->avail_cache[2])
1115 avail[1] = avail[2] = 1;
1116 if(
r->avail_cache[3])
1117 avail[3] = avail[4] = 1;
1118 if(
r->avail_cache[4])
1120 if(
r->avail_cache[5])
1121 avail[8] = avail[16] = 1;
1122 if(
r->avail_cache[9])
1123 avail[24] = avail[32] = 1;
1126 for(j = 0; j < 4; j++){
1128 for(
i = 0; i < 4; i++, cbp >>= 1, dst += 4, idx++){
1131 if(!(cbp & 1))
continue;
1134 r->luma_vlc, 0, q_ac, q_ac);
1136 dst +=
s->linesize * 4 - 4*4;
1137 intra_types +=
r->intra_types_stride;
1140 intra_types -=
r->intra_types_stride * 4;
1145 for(k = 0; k < 2; k++){
1149 for(j = 0; j < 2; j++){
1150 int* acache =
r->avail_cache + 6 + j*4;
1151 for(
i = 0; i < 2; i++, cbp >>= 1, acache++){
1152 int itype =
ittrans[intra_types[
i*2+j*2*
r->intra_types_stride]];
1156 if(!(cbp&1))
continue;
1159 r->chroma_vlc, 1, q_dc, q_ac);
1162 dst += 4*
s->uvlinesize;
1170 d = motion_val[0][0] - motion_val[-
step][0];
1173 d = motion_val[0][1] - motion_val[-
step][1];
1182 int hmvmask = 0, vmvmask = 0,
i, j;
1183 int midx =
s->mb_x * 2 +
s->mb_y * 2 *
s->b8_stride;
1184 int16_t (*motion_val)[2] = &
s->current_picture_ptr->motion_val[0][midx];
1185 for(j = 0; j < 16; j += 8){
1186 for(
i = 0;
i < 2;
i++){
1188 vmvmask |= 0x11 << (j +
i*2);
1190 hmvmask |= 0x03 << (j +
i*2);
1192 motion_val +=
s->b8_stride;
1194 if(
s->first_slice_line)
1199 vmvmask |= (vmvmask & 0x4444) >> 1;
1200 hmvmask |= (hmvmask & 0x0F00) >> 4;
1202 r->deblock_coefs[
s->mb_x - 1 +
s->mb_y*
s->mb_stride] |= (vmvmask & 0x1111) << 3;
1203 if(!
s->first_slice_line)
1204 r->deblock_coefs[
s->mb_x + (
s->mb_y - 1)*
s->mb_stride] |= (hmvmask & 0xF) << 12;
1206 return hmvmask | vmvmask;
1213 uint8_t *dst =
s->dest[0];
1214 int16_t *ptr =
s->block[0];
1215 int mb_pos =
s->mb_x +
s->mb_y *
s->mb_stride;
1217 int q_dc, q_ac, has_ac;
1222 memset(
r->avail_cache, 0,
sizeof(
r->avail_cache));
1224 dist = (
s->mb_x -
s->resync_mb_x) + (
s->mb_y -
s->resync_mb_y) *
s->mb_width;
1227 r->avail_cache[9] =
s->current_picture_ptr->mb_type[mb_pos - 1];
1228 if(dist >=
s->mb_width)
1230 r->avail_cache[3] =
s->current_picture_ptr->mb_type[mb_pos -
s->mb_stride];
1231 if(((
s->mb_x+1) <
s->mb_width) && dist >=
s->mb_width - 1)
1232 r->avail_cache[4] =
s->current_picture_ptr->mb_type[mb_pos -
s->mb_stride + 1];
1233 if(
s->mb_x && dist >
s->mb_width)
1234 r->avail_cache[1] =
s->current_picture_ptr->mb_type[mb_pos -
s->mb_stride - 1];
1236 s->qscale =
r->si.quant;
1238 r->cbp_luma [mb_pos] = cbp;
1239 r->cbp_chroma[mb_pos] = cbp >> 16;
1241 s->current_picture_ptr->qscale_table[mb_pos] =
s->qscale;
1246 if (
IS_INTRA(
s->current_picture_ptr->mb_type[mb_pos])){
1255 memset(block16, 0, 16 *
sizeof(*block16));
1259 r->rdsp.rv34_inv_transform(block16);
1261 r->rdsp.rv34_inv_transform_dc(block16);
1265 for(j = 0; j < 4; j++){
1266 for(
i = 0; i < 4; i++, cbp >>= 1){
1267 int dc = block16[
i + j*4];
1276 r->rdsp.rv34_idct_add(dst+4*
i,
s->linesize, ptr);
1278 r->rdsp.rv34_idct_dc_add(dst+4*
i,
s->linesize,
dc);
1281 dst += 4*
s->linesize;
1288 for(j = 0; j < 4; j++){
1289 for(
i = 0; i < 4; i++, cbp >>= 1){
1290 if(!(cbp & 1))
continue;
1293 r->luma_vlc, 0, q_ac, q_ac);
1295 dst += 4*
s->linesize;
1302 for(j = 1; j < 3; j++){
1304 for(
i = 0; i < 4; i++, cbp >>= 1){
1306 if(!(cbp & 1))
continue;
1307 pdst = dst + (
i&1)*4 + (
i&2)*2*
s->uvlinesize;
1310 r->chroma_vlc, 1, q_dc, q_ac);
1321 int mb_pos =
s->mb_x +
s->mb_y *
s->mb_stride;
1324 memset(
r->avail_cache, 0,
sizeof(
r->avail_cache));
1326 dist = (
s->mb_x -
s->resync_mb_x) + (
s->mb_y -
s->resync_mb_y) *
s->mb_width;
1329 r->avail_cache[9] =
s->current_picture_ptr->mb_type[mb_pos - 1];
1330 if(dist >=
s->mb_width)
1332 r->avail_cache[3] =
s->current_picture_ptr->mb_type[mb_pos -
s->mb_stride];
1333 if(((
s->mb_x+1) <
s->mb_width) && dist >=
s->mb_width - 1)
1334 r->avail_cache[4] =
s->current_picture_ptr->mb_type[mb_pos -
s->mb_stride + 1];
1335 if(
s->mb_x && dist >
s->mb_width)
1336 r->avail_cache[1] =
s->current_picture_ptr->mb_type[mb_pos -
s->mb_stride - 1];
1338 s->qscale =
r->si.quant;
1340 r->cbp_luma [mb_pos] = cbp;
1341 r->cbp_chroma[mb_pos] = cbp >> 16;
1342 r->deblock_coefs[mb_pos] = 0xFFFF;
1343 s->current_picture_ptr->qscale_table[mb_pos] =
s->qscale;
1360 if(
s->mb_y >=
s->mb_height)
1364 if(
r->s.mb_skip_run > 1)
1376 r->intra_types =
NULL;
1387 r->intra_types_stride =
r->s.mb_width * 4 + 4;
1389 r->cbp_chroma =
av_mallocz(
r->s.mb_stride *
r->s.mb_height *
1390 sizeof(*
r->cbp_chroma));
1392 sizeof(*
r->cbp_luma));
1393 r->deblock_coefs =
av_mallocz(
r->s.mb_stride *
r->s.mb_height *
1394 sizeof(*
r->deblock_coefs));
1395 r->intra_types_hist =
av_malloc(
r->intra_types_stride * 4 * 2 *
1396 sizeof(*
r->intra_types_hist));
1398 sizeof(*
r->mb_type));
1400 if (!(
r->cbp_chroma &&
r->cbp_luma &&
r->deblock_coefs &&
1401 r->intra_types_hist &&
r->mb_type)) {
1402 r->s.context_reinit = 1;
1407 r->intra_types =
r->intra_types_hist +
r->intra_types_stride * 4;
1424 int mb_pos, slice_type;
1428 res =
r->parse_slice_header(
r, gb, &
r->si);
1435 if (slice_type !=
s->pict_type) {
1439 if (
s->width !=
r->si.width ||
s->height !=
r->si.height) {
1445 s->qscale =
r->si.quant;
1446 s->mb_num_left =
r->si.end -
r->si.start;
1447 r->s.mb_skip_run = 0;
1449 mb_pos =
s->mb_x +
s->mb_y *
s->mb_width;
1450 if(
r->si.start != mb_pos){
1452 s->mb_x =
r->si.start %
s->mb_width;
1453 s->mb_y =
r->si.start /
s->mb_width;
1455 memset(
r->intra_types_hist, -1,
r->intra_types_stride * 4 * 2 *
sizeof(*
r->intra_types_hist));
1456 s->first_slice_line = 1;
1457 s->resync_mb_x =
s->mb_x;
1458 s->resync_mb_y =
s->mb_y;
1472 if (++
s->mb_x ==
s->mb_width) {
1477 memmove(
r->intra_types_hist,
r->intra_types,
r->intra_types_stride * 4 *
sizeof(*
r->intra_types_hist));
1478 memset(
r->intra_types, -1,
r->intra_types_stride * 4 *
sizeof(*
r->intra_types_hist));
1480 if(
r->loop_filter &&
s->mb_y >= 2)
1481 r->loop_filter(
r,
s->mb_y - 2);
1488 if(
s->mb_x ==
s->resync_mb_x)
1489 s->first_slice_line=0;
1494 return s->mb_y ==
s->mb_height;
1537 if (dst ==
src || !
s1->context_initialized)
1540 if (
s->height !=
s1->height ||
s->width !=
s1->width ||
s->context_reinit) {
1541 s->height =
s1->height;
1542 s->width =
s1->width;
1549 r->cur_pts = r1->cur_pts;
1550 r->last_pts = r1->last_pts;
1551 r->next_pts = r1->next_pts;
1553 memset(&
r->si, 0,
sizeof(
r->si));
1557 if (!
s1->context_initialized)
1565 if (n < slice_count) {
1575 int got_picture = 0,
ret;
1590 }
else if (
s->last_picture_ptr) {
1612 int *got_picture_ptr,
AVPacket *avpkt)
1614 const uint8_t *buf = avpkt->
data;
1615 int buf_size = avpkt->
size;
1621 const uint8_t *slices_hdr =
NULL;
1627 if (buf_size == 0) {
1629 if (
s->next_picture_ptr) {
1632 s->next_picture_ptr =
NULL;
1634 *got_picture_ptr = 1;
1639 slice_count = (*buf++) + 1;
1640 slices_hdr = buf + 4;
1641 buf += 8 * slice_count;
1642 buf_size -= 1 + 8 * slice_count;
1646 if(offset < 0 || offset > buf_size){
1651 if(
r->parse_slice_header(
r, &
r->s.gb, &si) < 0 || si.
start){
1655 if ((!
s->last_picture_ptr || !
s->last_picture_ptr->f->data[0]) &&
1658 "reference data.\n");
1667 if (si.
start == 0) {
1668 if (
s->mb_num_left > 0 &&
s->current_picture_ptr) {
1671 if (!
s->context_reinit)
1676 if (
s->width != si.
width ||
s->height != si.
height ||
s->context_reinit) {
1686 s->width,
s->height,
s->avctx->sample_aspect_ratio,
1705 if (!
r->tmp_b_block_base) {
1708 r->tmp_b_block_base =
av_malloc(
s->linesize * 48);
1709 if (!
r->tmp_b_block_base)
1711 for (
i = 0;
i < 2;
i++)
1712 r->tmp_b_block_y[
i] =
r->tmp_b_block_base
1713 +
i * 16 *
s->linesize;
1715 r->tmp_b_block_uv[
i] =
r->tmp_b_block_base + 32 *
s->linesize
1716 + (
i >> 1) * 8 *
s->uvlinesize
1719 r->cur_pts = si.
pts;
1721 r->last_pts =
r->next_pts;
1722 r->next_pts =
r->cur_pts;
1729 r->mv_weight1 =
r->mv_weight2 =
r->weight1 =
r->weight2 = 8192;
1730 r->scaled_weight = 0;
1732 if (
FFMAX(dist0, dist1) > refdist)
1735 r->mv_weight1 = (dist0 << 14) / refdist;
1736 r->mv_weight2 = (dist1 << 14) / refdist;
1737 if((
r->mv_weight1|
r->mv_weight2) & 511){
1738 r->weight1 =
r->mv_weight1;
1739 r->weight2 =
r->mv_weight2;
1740 r->scaled_weight = 0;
1742 r->weight1 =
r->mv_weight1 >> 9;
1743 r->weight2 =
r->mv_weight2 >> 9;
1744 r->scaled_weight = 1;
1748 s->mb_x =
s->mb_y = 0;
1750 }
else if (
s->context_reinit) {
1752 "reinitialize (start MB is %d).\n", si.
start);
1754 }
else if (HAVE_THREADS &&
1757 "multithreading mode (start MB is %d).\n", si.
start);
1761 for(
i = 0;
i < slice_count;
i++){
1766 if(offset < 0 || offset > offset1 || offset1 > buf_size){
1772 r->si.end =
s->mb_width *
s->mb_height;
1773 s->mb_num_left =
r->s.mb_x +
r->s.mb_y*
r->s.mb_width -
r->si.start;
1775 if(
i+1 < slice_count){
1777 if (offset2 < offset1 || offset2 > buf_size) {
1782 if(
r->parse_slice_header(
r, &
r->s.gb, &si) < 0){
1793 if (
s->current_picture_ptr) {
1796 r->loop_filter(
r,
s->mb_height - 1);
1801 *got_picture_ptr =
ret;
1802 }
else if (HAVE_THREADS &&
av_cold int ff_mpv_common_init(MpegEncContext *s)
init common structure for both encoder and decoder.
static const int rv34_mb_type_to_lavc[12]
translation of RV30/40 macroblock types to lavc ones
void(* h264_chroma_mc_func)(uint8_t *dst, const uint8_t *src, ptrdiff_t srcStride, int h, int x, int y)
#define AV_LOG_WARNING
Something somehow does not look correct.
static const uint16_t rv34_qscale_tab[32]
This table is used for dequantizing.
static void rv34_output_intra(RV34DecContext *r, int8_t *intra_types, int cbp)
static int get_bits_left(GetBitContext *gb)
av_cold int ff_rv34_decode_end(AVCodecContext *avctx)
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
int ff_mpv_export_qp_table(const MpegEncContext *s, AVFrame *f, const Picture *p, int qp_type)
static void rv34_pred_mv_rv3(RV34DecContext *r, int block_type, int dir)
motion vector prediction - RV3 version
#define u(width, name, range_min, range_max)
static const uint8_t rv34_table_inter_secondpat[NUM_INTER_TABLES][2][OTHERBLK_VLC_SIZE]
static const int ittrans16[4]
mapping of RV30/40 intra 16x16 prediction types to standard H.264 types
static const int num_mvs[RV34_MB_TYPES]
number of motion vectors in each macroblock type
static const int chroma_coeffs[3]
int ff_rv34_get_start_offset(GetBitContext *gb, int mb_size)
Decode starting slice position.
This structure describes decoded (raw) audio or video data.
trying all byte sequences megabyte in length and selecting the best looking sequence will yield cases to try But a word about which is also called distortion Distortion can be quantified by almost any quality measurement one chooses the sum of squared differences is used but more complex methods that consider psychovisual effects can be used as well It makes no difference in this discussion First step
int ff_rv34_decode_update_thread_context(AVCodecContext *dst, const AVCodecContext *src)
static const uint16_t table[]
static int rv34_decoder_realloc(RV34DecContext *r)
static int check_slice_end(RV34DecContext *r, MpegEncContext *s)
#define fc(width, name, range_min, range_max)
void ff_er_add_slice(ERContext *s, int startx, int starty, int endx, int endy, int status)
Add a slice.
void ff_init_block_index(MpegEncContext *s)
static int rv34_set_deblock_coef(RV34DecContext *r)
#define MB_TYPE_INTRA16x16
int ff_set_dimensions(AVCodecContext *s, int width, int height)
Check that the provided frame dimensions are valid and set them on the codec context.
static int init_get_bits(GetBitContext *s, const uint8_t *buffer, int bit_size)
Initialize GetBitContext.
the pkt_dts and pkt_pts fields in AVFrame will work as usual Restrictions on codec whose streams don t reset across will not work because their bitstreams cannot be decoded in parallel *The contents of buffers must not be read before ff_thread_await_progress() has been called on them. reget_buffer() and buffer age optimizations no longer work. *The contents of buffers must not be written to after ff_thread_report_progress() has been called on them. This includes draw_edges(). Porting codecs to frame threading
static const uint8_t avail_indexes[4]
availability index for subblocks
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
static int adjust_pred16(int itype, int up, int left)
@ RV34_MB_B_FORWARD
B-frame macroblock, forward prediction.
static int rv34_decoder_alloc(RV34DecContext *r)
enum AVDiscard skip_frame
Skip decoding for selected frames.
static void rv34_pred_mv(RV34DecContext *r, int block_type, int subblock_no, int dmv_no)
motion vector prediction
const VLCElem * first_pattern[4]
VLCs used for decoding coefficients in the first subblock.
static int rv34_decode_block(int16_t *dst, GetBitContext *gb, const RV34VLC *rvlc, int fc, int sc, int q_dc, int q_ac1, int q_ac2)
Decode coefficients for 4x4 block.
@ RV34_MB_B_DIRECT
Bidirectionally predicted B-frame macroblock, no motion vectors.
static double val(void *priv, double ch)
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf type
void ff_print_debug_info(const MpegEncContext *s, const Picture *p, AVFrame *pict)
static const uint8_t rv34_count_ones[16]
number of ones in nibble minus one
static const uint8_t rv34_table_intra_firstpat[NUM_INTRA_TABLES][4][FIRSTBLK_VLC_SIZE]
static const uint8_t quant[64]
s EdgeDetect Foobar g libavfilter vf_edgedetect c libavfilter vf_foobar c edit libavfilter and add an entry for foobar following the pattern of the other filters edit libavfilter allfilters and add an entry for foobar following the pattern of the other filters configure make j< whatever > ffmpeg ffmpeg i you should get a foobar png with Lena edge detected That s your new playground is ready Some little details about what s going which in turn will define variables for the build system and the C
void ff_mpv_common_end(MpegEncContext *s)
static int ff_thread_once(char *control, void(*routine)(void))
#define AV_LOG_TRACE
Extremely verbose debugging, useful for libav* development.
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
#define FF_ARRAY_ELEMS(a)
av_cold int ff_rv34_decode_init(AVCodecContext *avctx)
Initialize decoder.
static void rv34_pred_4x4_block(RV34DecContext *r, uint8_t *dst, int stride, int itype, int up, int left, int down, int right)
Perform 4x4 intra prediction.
static int rv34_decode_intra_macroblock(RV34DecContext *r, int8_t *intra_types)
void ff_thread_report_progress(ThreadFrame *f, int n, int field)
Notify later decoding threads when part of their reference picture is ready.
static void ZERO8x2(void *dst, int stride)
static const uint16_t mask[17]
VLC tables used by the decoder.
int has_b_frames
Size of the frame reordering buffer in the decoder.
void ff_er_frame_end(ERContext *s, int *decode_error_flags)
Indicate that a frame has finished decoding and perform error concealment in case it has been enabled...
int ff_mpv_common_frame_size_change(MpegEncContext *s)
static void rv34_mc_1mv(RV34DecContext *r, const int block_type, const int xoff, const int yoff, int mv_off, const int width, const int height, int dir)
static int rv34_decode_inter_macroblock(RV34DecContext *r, int8_t *intra_types)
static RV34VLC intra_vlcs[NUM_INTRA_TABLES]
#define VERT_LEFT_PRED_RV40_NODOWN
VLC cbp[2][4]
VLCs used for coded block patterns decoding.
void ff_mpeg_er_frame_start(MpegEncContext *s)
static int calc_add_mv(RV34DecContext *r, int dir, int val)
Calculate motion vector component that should be added for direct blocks.
#define LOCAL_ALIGNED_16(t, v,...)
#define av_assert0(cond)
assert() equivalent, that is always enabled.
@ AV_PIX_FMT_YUV420P
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
static int finish_frame(AVCodecContext *avctx, AVFrame *pict)
static const uint16_t rv34_mb_max_sizes[6]
maximum number of macroblocks for each of the possible slice offset sizes
static void decode_coeff(int16_t *dst, int coef, int esc, GetBitContext *gb, const VLCElem *vlc, int q)
Get one coefficient value from the bitstream and store it.
const VLCElem * second_pattern[2]
VLCs used for decoding coefficients in the subblocks 2 and 3.
@ AVDISCARD_ALL
discard all
static const uint8_t rv34_inter_coeff[NUM_INTER_TABLES][COEFF_VLC_SIZE]
const VLCElem * cbppattern[2]
VLCs used for pattern of coded block patterns decoding.
#define GET_PTS_DIFF(a, b)
static int rv34_decode_slice(RV34DecContext *r, int end, const uint8_t *buf, int buf_size)
static av_cold void rv34_init_tables(void)
Initialize all tables.
@ RV34_MB_SKIP
Skipped block.
Rational number (pair of numerator and denominator).
static void decode_subblock(int16_t *dst, int code, const int is_block2, GetBitContext *gb, const VLCElem *vlc, int q)
Decode 2x2 subblock of coefficients.
static const uint8_t rv34_table_intra_cbppat[NUM_INTRA_TABLES][2][CBPPAT_VLC_SIZE]
const VLCElem * third_pattern[2]
VLCs used for decoding coefficients in the last subblock.
int type
slice type (intra, inter)
static void decode_subblock3(int16_t *dst, int code, GetBitContext *gb, const VLCElem *vlc, int q_dc, int q_ac1, int q_ac2)
@ AV_PICTURE_TYPE_I
Intra.
static unsigned int get_bits1(GetBitContext *s)
static av_cold void rv34_gen_vlc_ext(const uint8_t *bits, int size, VLC *vlc, const uint8_t *syms, int *offset)
Generate VLC from codeword lengths.
static const uint8_t rv34_table_intra_secondpat[NUM_INTRA_TABLES][2][OTHERBLK_VLC_SIZE]
static av_always_inline int get_vlc2(GetBitContext *s, const VLCElem *table, int bits, int max_depth)
Parse a vlc code.
#define FF_MPV_QSCALE_TYPE_MPEG1
static int rv34_decode_mv(RV34DecContext *r, int block_type)
Decode motion vector differences and perform motion vector reconstruction and motion compensation.
void(* qpel_mc_func)(uint8_t *dst, const uint8_t *src, ptrdiff_t stride)
@ RV34_MB_P_8x8
P-frame macroblock, 8x8 motion compensation partitions.
static const uint8_t rv34_table_intra_thirdpat[NUM_INTRA_TABLES][2][OTHERBLK_VLC_SIZE]
static void rv34_mc_2mv_skip(RV34DecContext *r)
@ AVDISCARD_NONKEY
discard all frames except keyframes
static const uint8_t rv34_cbp_code[16]
values used to reconstruct coded block pattern
static int is_mv_diff_gt_3(int16_t(*motion_val)[2], int step)
Tag MUST be and< 10hcoeff half pel interpolation filter coefficients, hcoeff[0] are the 2 middle coefficients[1] are the next outer ones and so on, resulting in a filter like:...eff[2], hcoeff[1], hcoeff[0], hcoeff[0], hcoeff[1], hcoeff[2] ... the sign of the coefficients is not explicitly stored but alternates after each coeff and coeff[0] is positive, so ...,+,-,+,-,+,+,-,+,-,+,... hcoeff[0] is not explicitly stored but found by subtracting the sum of all stored coefficients with signs from 32 hcoeff[0]=32 - hcoeff[1] - hcoeff[2] - ... a good choice for hcoeff and htaps is htaps=6 hcoeff={40,-10, 2} an alternative which requires more computations at both encoder and decoder side and may or may not be better is htaps=8 hcoeff={42,-14, 6,-2}ref_frames minimum of the number of available reference frames and max_ref_frames for example the first frame after a key frame always has ref_frames=1spatial_decomposition_type wavelet type 0 is a 9/7 symmetric compact integer wavelet 1 is a 5/3 symmetric compact integer wavelet others are reserved stored as delta from last, last is reset to 0 if always_reset||keyframeqlog quality(logarithmic quantizer scale) stored as delta from last, last is reset to 0 if always_reset||keyframemv_scale stored as delta from last, last is reset to 0 if always_reset||keyframe FIXME check that everything works fine if this changes between framesqbias dequantization bias stored as delta from last, last is reset to 0 if always_reset||keyframeblock_max_depth maximum depth of the block tree stored as delta from last, last is reset to 0 if always_reset||keyframequant_table quantization tableHighlevel bitstream structure:==============================--------------------------------------------|Header|--------------------------------------------|------------------------------------|||Block0||||split?||||yes no||||......... intra?||||:Block01 :yes no||||:Block02 :....... ..........||||:Block03 ::y DC ::ref index:||||:Block04 ::cb DC ::motion x :||||......... :cr DC ::motion y :||||....... ..........|||------------------------------------||------------------------------------|||Block1|||...|--------------------------------------------|------------ ------------ ------------|||Y subbands||Cb subbands||Cr subbands||||--- ---||--- ---||--- ---|||||LL0||HL0||||LL0||HL0||||LL0||HL0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||LH0||HH0||||LH0||HH0||||LH0||HH0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HL1||LH1||||HL1||LH1||||HL1||LH1|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HH1||HL2||||HH1||HL2||||HH1||HL2|||||...||...||...|||------------ ------------ ------------|--------------------------------------------Decoding process:=================------------|||Subbands|------------||||------------|Intra DC||||LL0 subband prediction ------------|\ Dequantization ------------------- \||Reference frames|\ IDWT|------- -------|Motion \|||Frame 0||Frame 1||Compensation . OBMC v -------|------- -------|--------------. \------> Frame n output Frame Frame<----------------------------------/|...|------------------- Range Coder:============Binary Range Coder:------------------- The implemented range coder is an adapted version based upon "Range encoding: an algorithm for removing redundancy from a digitised message." by G. N. N. Martin. The symbols encoded by the Snow range coder are bits(0|1). The associated probabilities are not fix but change depending on the symbol mix seen so far. bit seen|new state ---------+----------------------------------------------- 0|256 - state_transition_table[256 - old_state];1|state_transition_table[old_state];state_transition_table={ 0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 190, 191, 192, 194, 194, 195, 196, 197, 198, 199, 200, 201, 202, 202, 204, 205, 206, 207, 208, 209, 209, 210, 211, 212, 213, 215, 215, 216, 217, 218, 219, 220, 220, 222, 223, 224, 225, 226, 227, 227, 229, 229, 230, 231, 232, 234, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 248, 0, 0, 0, 0, 0, 0, 0};FIXME Range Coding of integers:------------------------- FIXME Neighboring Blocks:===================left and top are set to the respective blocks unless they are outside of the image in which case they are set to the Null block top-left is set to the top left block unless it is outside of the image in which case it is set to the left block if this block has no larger parent block or it is at the left side of its parent block and the top right block is not outside of the image then the top right block is used for top-right else the top-left block is used Null block y, cb, cr are 128 level, ref, mx and my are 0 Motion Vector Prediction:=========================1. the motion vectors of all the neighboring blocks are scaled to compensate for the difference of reference frames scaled_mv=(mv *(256 *(current_reference+1)/(mv.reference+1))+128)> the median of the scaled top and top right vectors is used as motion vector prediction the used motion vector is the sum of the predictor and(mvx_diff, mvy_diff) *mv_scale Intra DC Prediction block[y][x] dc[1]
int av_frame_ref(AVFrame *dst, const AVFrame *src)
Set up a new reference to the data described by the source frame.
@ RV34_MB_B_BACKWARD
B-frame macroblock, backward prediction.
int ff_rv34_decode_frame(AVCodecContext *avctx, AVFrame *pict, int *got_picture_ptr, AVPacket *avpkt)
static void ff_update_block_index(MpegEncContext *s, int bits_per_raw_sample, int lowres, int chroma_x_shift)
static AVRational update_sar(int old_w, int old_h, AVRational sar, int new_w, int new_h)
#define FIRSTBLK_VLC_SIZE
static int get_interleaved_se_golomb(GetBitContext *gb)
@ RV34_MB_P_8x16
P-frame macroblock, 8x16 motion compensation partitions.
static void decode_subblock1(int16_t *dst, int code, GetBitContext *gb, const VLCElem *vlc, int q)
Decode a single coefficient.
static int rv34_decode_cbp(GetBitContext *gb, const RV34VLC *vlc, int table)
Decode coded block pattern.
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_WL32 unsigned int_TMPL AV_WL24 unsigned int_TMPL AV_WL16 uint64_t_TMPL AV_WB64 unsigned int_TMPL AV_RB32
static const uint8_t rv34_inter_cbppat[NUM_INTER_TABLES][CBPPAT_VLC_SIZE]
int ff_mpv_frame_start(MpegEncContext *s, AVCodecContext *avctx)
generic function called after decoding the header and before a frame is decoded.
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf offset
#define OTHERBLK_VLC_SIZE
int ff_vlc_init_sparse(VLC *vlc, int nb_bits, int nb_codes, const void *bits, int bits_wrap, int bits_size, const void *codes, int codes_wrap, int codes_size, const void *symbols, int symbols_wrap, int symbols_size, int flags)
Build VLC decoding tables suitable for use with get_vlc2().
int16_t(*[2] motion_val)[2]
static void rv34_output_i16x16(RV34DecContext *r, int8_t *intra_types, int cbp)
@ RV34_MB_TYPE_INTRA16x16
Intra macroblock with DCs in a separate 4x4 block.
#define AV_LOG_INFO
Standard information.
static void rv34_pred_mv_b(RV34DecContext *r, int block_type, int dir)
motion vector prediction for B-frames
#define FF_THREAD_FRAME
Decode more than one frame at once.
static const uint8_t rv34_table_inter_thirdpat[NUM_INTER_TABLES][2][OTHERBLK_VLC_SIZE]
#define DIAG_DOWN_LEFT_PRED_RV40_NODOWN
#define av_assert2(cond)
assert() equivalent, that does lie in speed critical code.
static const uint8_t part_sizes_h[RV34_MB_TYPES]
macroblock partition height in 8x8 blocks
#define i(width, name, range_min, range_max)
and forward the test the status of outputs and forward it to the corresponding return FFERROR_NOT_READY If the filters stores internally one or a few frame for some it can consider them to be part of the FIFO and delay acknowledging a status change accordingly Example code
static unsigned int show_bits(GetBitContext *s, int n)
Show 1-25 bits.
static const uint8_t rv34_table_inter_firstpat[NUM_INTER_TABLES][2][FIRSTBLK_VLC_SIZE]
void ff_mpv_decode_init(MpegEncContext *s, AVCodecContext *avctx)
Initialize the given MpegEncContext for decoding.
#define HOR_UP_PRED_RV40_NODOWN
static void rv34_mc_2mv(RV34DecContext *r, const int block_type)
#define av_assert1(cond)
assert() equivalent, that does not lie in speed critical code.
static const uint8_t rv34_table_intra_cbp[NUM_INTRA_TABLES][8][CBP_VLC_SIZE]
@ RV34_MB_TYPE_INTRA
Intra macroblock.
void * av_mallocz(size_t size)
Allocate a memory block with alignment suitable for all memory accesses (including vectors if availab...
static VLCElem table_data[117592]
static const uint8_t rv34_quant_to_vlc_set[2][32]
tables used to translate a quantizer value into a VLC set for decoding The first table is used for in...
essential slice information
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
static int get_slice_offset(AVCodecContext *avctx, const uint8_t *buf, int n, int slice_count, int buf_size)
static int mod(int a, int b)
Modulo operation with only positive remainders.
const VLCElem * coefficient
VLCs used for decoding big coefficients.
static void rv4_weight(RV34DecContext *r)
the pkt_dts and pkt_pts fields in AVFrame will work as usual Restrictions on codec whose streams don t reset across will not work because their bitstreams cannot be decoded in parallel *The contents of buffers must not be read before as well as code calling up to before the decode process starts Call ff_thread_finish_setup() afterwards. If some code can 't be moved
Tag MUST be and< 10hcoeff half pel interpolation filter coefficients, hcoeff[0] are the 2 middle coefficients[1] are the next outer ones and so on, resulting in a filter like:...eff[2], hcoeff[1], hcoeff[0], hcoeff[0], hcoeff[1], hcoeff[2] ... the sign of the coefficients is not explicitly stored but alternates after each coeff and coeff[0] is positive, so ...,+,-,+,-,+,+,-,+,-,+,... hcoeff[0] is not explicitly stored but found by subtracting the sum of all stored coefficients with signs from 32 hcoeff[0]=32 - hcoeff[1] - hcoeff[2] - ... a good choice for hcoeff and htaps is htaps=6 hcoeff={40,-10, 2} an alternative which requires more computations at both encoder and decoder side and may or may not be better is htaps=8 hcoeff={42,-14, 6,-2}ref_frames minimum of the number of available reference frames and max_ref_frames for example the first frame after a key frame always has ref_frames=1spatial_decomposition_type wavelet type 0 is a 9/7 symmetric compact integer wavelet 1 is a 5/3 symmetric compact integer wavelet others are reserved stored as delta from last, last is reset to 0 if always_reset||keyframeqlog quality(logarithmic quantizer scale) stored as delta from last, last is reset to 0 if always_reset||keyframemv_scale stored as delta from last, last is reset to 0 if always_reset||keyframe FIXME check that everything works fine if this changes between framesqbias dequantization bias stored as delta from last, last is reset to 0 if always_reset||keyframeblock_max_depth maximum depth of the block tree stored as delta from last, last is reset to 0 if always_reset||keyframequant_table quantization tableHighlevel bitstream structure:==============================--------------------------------------------|Header|--------------------------------------------|------------------------------------|||Block0||||split?||||yes no||||......... intra?||||:Block01 :yes no||||:Block02 :....... ..........||||:Block03 ::y DC ::ref index:||||:Block04 ::cb DC ::motion x :||||......... :cr DC ::motion y :||||....... ..........|||------------------------------------||------------------------------------|||Block1|||...|--------------------------------------------|------------ ------------ ------------|||Y subbands||Cb subbands||Cr subbands||||--- ---||--- ---||--- ---|||||LL0||HL0||||LL0||HL0||||LL0||HL0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||LH0||HH0||||LH0||HH0||||LH0||HH0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HL1||LH1||||HL1||LH1||||HL1||LH1|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HH1||HL2||||HH1||HL2||||HH1||HL2|||||...||...||...|||------------ ------------ ------------|--------------------------------------------Decoding process:=================------------|||Subbands|------------||||------------|Intra DC||||LL0 subband prediction ------------|\ Dequantization ------------------- \||Reference frames|\ IDWT|------- -------|Motion \|||Frame 0||Frame 1||Compensation . OBMC v -------|------- -------|--------------. \------> Frame n output Frame Frame<----------------------------------/|...|------------------- Range Coder:============Binary Range Coder:------------------- The implemented range coder is an adapted version based upon "Range encoding: an algorithm for removing redundancy from a digitised message." by G. N. N. Martin. The symbols encoded by the Snow range coder are bits(0|1). The associated probabilities are not fix but change depending on the symbol mix seen so far. bit seen|new state ---------+----------------------------------------------- 0|256 - state_transition_table[256 - old_state];1|state_transition_table[old_state];state_transition_table={ 0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 190, 191, 192, 194, 194, 195, 196, 197, 198, 199, 200, 201, 202, 202, 204, 205, 206, 207, 208, 209, 209, 210, 211, 212, 213, 215, 215, 216, 217, 218, 219, 220, 220, 222, 223, 224, 225, 226, 227, 227, 229, 229, 230, 231, 232, 234, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 248, 0, 0, 0, 0, 0, 0, 0};FIXME Range Coding of integers:------------------------- FIXME Neighboring Blocks:===================left and top are set to the respective blocks unless they are outside of the image in which case they are set to the Null block top-left is set to the top left block unless it is outside of the image in which case it is set to the left block if this block has no larger parent block or it is at the left side of its parent block and the top right block is not outside of the image then the top right block is used for top-right else the top-left block is used Null block y, cb, cr are 128 level, ref, mx and my are 0 Motion Vector Prediction:=========================1. the motion vectors of all the neighboring blocks are scaled to compensate for the difference of reference frames scaled_mv=(mv *(256 *(current_reference+1)/(mv.reference+1))+128)> the median of the scaled left
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_RL32
static const uint8_t rv34_inter_cbp[NUM_INTER_TABLES][4][CBP_VLC_SIZE]
int ff_mpeg_update_thread_context(AVCodecContext *dst, const AVCodecContext *src)
main external API structure.
#define VLC_INIT_STATIC_OVERLONG
uint32_t * mb_type
types and macros are defined in mpegutils.h
static int rv34_decode_inter_mb_header(RV34DecContext *r, int8_t *intra_types)
Decode inter macroblock header and return CBP in case of success, -1 otherwise.
av_cold void ff_h264_pred_init(H264PredContext *h, int codec_id, const int bit_depth, int chroma_format_idc)
Set the intra prediction function pointers.
@ AV_PICTURE_TYPE_B
Bi-dir predicted.
static const uint8_t rv34_intra_coeff[NUM_INTRA_TABLES][COEFF_VLC_SIZE]
static const uint8_t part_sizes_w[RV34_MB_TYPES]
macroblock partition width in 8x8 blocks
static const int ittrans[9]
mapping of RV30/40 intra prediction types to standard H.264 types
static void fill_rectangle(int x, int y, int w, int h)
static const uint8_t rv34_chroma_quant[2][32]
quantizer values used for AC and DC coefficients in chroma blocks
void ff_mpv_frame_end(MpegEncContext *s)
static int rv34_decode_intra_mb_header(RV34DecContext *r, int8_t *intra_types)
Decode intra macroblock header and return CBP in case of success, -1 otherwise.
static const uint8_t rv34_mb_bits_sizes[6]
bits needed to code the slice offset for the given size
static void rv34_process_block(RV34DecContext *r, uint8_t *pdst, int stride, int fc, int sc, int q_dc, int q_ac)
AVRational av_mul_q(AVRational b, AVRational c)
Multiply two rationals.
@ RV34_MB_P_MIX16x16
P-frame macroblock with DCs in a separate 4x4 block, one motion vector.
@ AV_PICTURE_TYPE_P
Predicted.
static void rv34_mc(RV34DecContext *r, const int block_type, const int xoff, const int yoff, int mv_off, const int width, const int height, int dir, const int thirdpel, int weighted, qpel_mc_func(*qpel_mc)[16], h264_chroma_mc_func(*chroma_mc))
generic motion compensation function
#define MB_TYPE_SEPARATE_DC
@ RV34_MB_P_16x8
P-frame macroblock, 16x8 motion compensation partitions.
This structure stores compressed data.
static RV34VLC inter_vlcs[NUM_INTER_TABLES]
#define flags(name, subs,...)
@ RV34_MB_P_16x16
P-frame macroblock, one motion frame.
static RV34VLC * choose_vlc_set(int quant, int mod, int type)
Select VLC set for decoding from current quantizer, modifier and frame type.
static const double coeff[2][5]
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
@ RV34_MB_B_BIDIR
Bidirectionally predicted B-frame macroblock, two motion vectors.
static const uint8_t modulo_three_table[108]
precalculated results of division by three and modulo three for values 0-107
int av_image_check_size(unsigned int w, unsigned int h, int log_offset, void *log_ctx)
Check if the given dimension of an image is valid, meaning that all bytes of the image can be address...
static av_cold void rv34_gen_vlc(const uint8_t *bits, int size, const VLCElem **vlcp, int *offset)
@ AVDISCARD_NONREF
discard all non reference
static void rv34_decoder_free(RV34DecContext *r)
static const uint8_t shifts[2][12]
static void rv34_pred_b_vector(int A[2], int B[2], int C[2], int A_avail, int B_avail, int C_avail, int *mx, int *my)
Predict motion vector for B-frame macroblock.