Go to the documentation of this file.
38 { 36, 68, 60, 92, 34, 66, 58, 90, },
39 { 100, 4, 124, 28, 98, 2, 122, 26, },
40 { 52, 84, 44, 76, 50, 82, 42, 74, },
41 { 116, 20, 108, 12, 114, 18, 106, 10, },
42 { 32, 64, 56, 88, 38, 70, 62, 94, },
43 { 96, 0, 120, 24, 102, 6, 126, 30, },
44 { 48, 80, 40, 72, 54, 86, 46, 78, },
45 { 112, 16, 104, 8, 118, 22, 110, 14, },
46 { 36, 68, 60, 92, 34, 66, 58, 90, },
50 64, 64, 64, 64, 64, 64, 64, 64
57 uint8_t *ptr = plane +
stride * y;
65 const uint8_t *_src,
const int16_t *
filter,
66 const int32_t *filterPos,
int filterSize)
71 const uint16_t *
src = (
const uint16_t *) _src;
81 for (
i = 0;
i < dstW;
i++) {
83 int srcPos = filterPos[
i];
86 for (j = 0; j < filterSize; j++) {
95 const uint8_t *_src,
const int16_t *
filter,
96 const int32_t *filterPos,
int filterSize)
100 const uint16_t *
src = (
const uint16_t *) _src;
101 int sh =
desc->comp[0].depth - 1;
109 for (
i = 0;
i < dstW;
i++) {
111 int srcPos = filterPos[
i];
114 for (j = 0; j < filterSize; j++) {
118 dst[
i] =
FFMIN(
val >> sh, (1 << 15) - 1);
124 const uint8_t *
src,
const int16_t *
filter,
125 const int32_t *filterPos,
int filterSize)
128 for (
i = 0;
i < dstW;
i++) {
130 int srcPos = filterPos[
i];
132 for (j = 0; j < filterSize; j++) {
140 const uint8_t *
src,
const int16_t *
filter,
141 const int32_t *filterPos,
int filterSize)
145 for (
i = 0;
i < dstW;
i++) {
147 int srcPos = filterPos[
i];
149 for (j = 0; j < filterSize; j++) {
162 dstU[
i] = (
FFMIN(dstU[
i], 30775) * 4663 - 9289992) >> 12;
163 dstV[
i] = (
FFMIN(dstV[
i], 30775) * 4663 - 9289992) >> 12;
171 dstU[
i] = (dstU[
i] * 1799 + 4081085) >> 11;
172 dstV[
i] = (dstV[
i] * 1799 + 4081085) >> 11;
180 dst[
i] = (
FFMIN(dst[
i], 30189) * 19077 - 39057361) >> 14;
187 dst[
i] = (dst[
i] * 14071 + 33561947) >> 14;
196 dstU[
i] = (
FFMIN(dstU[
i], 30775 << 4) * 4663 - (9289992 << 4)) >> 12;
197 dstV[
i] = (
FFMIN(dstV[
i], 30775 << 4) * 4663 - (9289992 << 4)) >> 12;
207 dstU[
i] = (dstU[
i] * 1799 + (4081085 << 4)) >> 11;
208 dstV[
i] = (dstV[
i] * 1799 + (4081085 << 4)) >> 11;
217 dst[
i] = ((
int)(
FFMIN(dst[
i], 30189 << 4) * 4769
U - (39057361 << 2))) >> 12;
226 dst[
i] = (dst[
i]*(14071/4) + (33561947<<4)/4)>>12;
230 #define DEBUG_SWSCALE_BUFFERS 0
231 #define DEBUG_BUFFERS(...) \
232 if (DEBUG_SWSCALE_BUFFERS) \
233 av_log(c, AV_LOG_DEBUG, __VA_ARGS__)
236 int srcStride[],
int srcSliceY,
int srcSliceH,
237 uint8_t *dst[],
int dstStride[],
238 int dstSliceY,
int dstSliceH)
240 const int scale_dst = dstSliceY > 0 || dstSliceH <
c->dstH;
244 const int dstW =
c->dstW;
248 const int flags =
c->flags;
249 int32_t *vLumFilterPos =
c->vLumFilterPos;
250 int32_t *vChrFilterPos =
c->vChrFilterPos;
252 const int vLumFilterSize =
c->vLumFilterSize;
253 const int vChrFilterSize =
c->vChrFilterSize;
262 const int chrSrcSliceY = srcSliceY >>
c->chrSrcVSubSample;
264 int should_dither =
isNBPS(
c->srcFormat) ||
270 int lastInLumBuf =
c->lastInLumBuf;
271 int lastInChrBuf =
c->lastInChrBuf;
274 int lumEnd =
c->descIndex[0];
275 int chrStart = lumEnd;
276 int chrEnd =
c->descIndex[1];
278 int vEnd =
c->numDesc;
279 SwsSlice *src_slice = &
c->slice[lumStart];
280 SwsSlice *hout_slice = &
c->slice[
c->numSlice-2];
281 SwsSlice *vout_slice = &
c->slice[
c->numSlice-1];
284 int needAlpha =
c->needAlpha;
295 srcStride[3] = srcStride[0];
297 srcStride[1] *= 1 <<
c->vChrDrop;
298 srcStride[2] *= 1 <<
c->vChrDrop;
300 DEBUG_BUFFERS(
"swscale() %p[%d] %p[%d] %p[%d] %p[%d] -> %p[%d] %p[%d] %p[%d] %p[%d]\n",
301 src[0], srcStride[0],
src[1], srcStride[1],
302 src[2], srcStride[2],
src[3], srcStride[3],
303 dst[0], dstStride[0], dst[1], dstStride[1],
304 dst[2], dstStride[2], dst[3], dstStride[3]);
305 DEBUG_BUFFERS(
"srcSliceY: %d srcSliceH: %d dstY: %d dstH: %d\n",
308 vLumFilterSize, vChrFilterSize);
310 if (dstStride[0]&15 || dstStride[1]&15 ||
311 dstStride[2]&15 || dstStride[3]&15) {
316 "Warning: dstStride is not aligned!\n"
317 " ->cannot do aligned memory accesses anymore\n");
322 if ( (uintptr_t)dst[0]&15 || (uintptr_t)dst[1]&15 || (uintptr_t)dst[2]&15
323 || (uintptr_t)
src[0]&15 || (uintptr_t)
src[1]&15 || (uintptr_t)
src[2]&15
324 || dstStride[0]&15 || dstStride[1]&15 || dstStride[2]&15 || dstStride[3]&15
325 || srcStride[0]&15 || srcStride[1]&15 || srcStride[2]&15 || srcStride[3]&15
338 dstH = dstY + dstSliceH;
341 }
else if (srcSliceY == 0) {
350 if (!should_dither) {
356 yuv2packed1, yuv2packed2, yuv2packedX, yuv2anyX,
c->use_mmx_vfilter);
359 srcSliceY,
srcSliceH, chrSrcSliceY, chrSrcSliceH, 1);
362 dstY, dstSliceH, dstY >>
c->chrDstVSubSample,
364 if (srcSliceY == 0) {
374 hout_slice->
width = dstW;
377 for (; dstY < dstH; dstY++) {
378 const int chrDstY = dstY >>
c->chrDstVSubSample;
379 int use_mmx_vfilter=
c->use_mmx_vfilter;
382 const int firstLumSrcY =
FFMAX(1 - vLumFilterSize, vLumFilterPos[dstY]);
383 const int firstLumSrcY2 =
FFMAX(1 - vLumFilterSize, vLumFilterPos[
FFMIN(dstY | ((1 <<
c->chrDstVSubSample) - 1),
c->dstH - 1)]);
385 const int firstChrSrcY =
FFMAX(1 - vChrFilterSize, vChrFilterPos[chrDstY]);
388 int lastLumSrcY =
FFMIN(
c->srcH, firstLumSrcY + vLumFilterSize) - 1;
389 int lastLumSrcY2 =
FFMIN(
c->srcH, firstLumSrcY2 + vLumFilterSize) - 1;
390 int lastChrSrcY =
FFMIN(
c->chrSrcH, firstChrSrcY + vChrFilterSize) - 1;
394 int posY, cPosY, firstPosY, lastPosY, firstCPosY, lastCPosY;
397 if (firstLumSrcY > lastInLumBuf) {
399 hasLumHoles = lastInLumBuf != firstLumSrcY - 1;
407 lastInLumBuf = firstLumSrcY - 1;
409 if (firstChrSrcY > lastInChrBuf) {
411 hasChrHoles = lastInChrBuf != firstChrSrcY - 1;
419 lastInChrBuf = firstChrSrcY - 1;
423 DEBUG_BUFFERS(
"\tfirstLumSrcY: %d lastLumSrcY: %d lastInLumBuf: %d\n",
424 firstLumSrcY, lastLumSrcY, lastInLumBuf);
425 DEBUG_BUFFERS(
"\tfirstChrSrcY: %d lastChrSrcY: %d lastInChrBuf: %d\n",
426 firstChrSrcY, lastChrSrcY, lastInChrBuf);
429 enough_lines = lastLumSrcY2 < srcSliceY +
srcSliceH &&
434 lastChrSrcY = chrSrcSliceY + chrSrcSliceH - 1;
435 DEBUG_BUFFERS(
"buffering slice: lastLumSrcY %d lastChrSrcY %d\n",
436 lastLumSrcY, lastChrSrcY);
444 if (posY <= lastLumSrcY && !hasLumHoles) {
445 firstPosY =
FFMAX(firstLumSrcY, posY);
449 lastPosY = lastLumSrcY;
453 if (cPosY <= lastChrSrcY && !hasChrHoles) {
454 firstCPosY =
FFMAX(firstChrSrcY, cPosY);
458 lastCPosY = lastChrSrcY;
463 if (posY < lastLumSrcY + 1) {
464 for (
i = lumStart;
i < lumEnd; ++
i)
468 lastInLumBuf = lastLumSrcY;
470 if (cPosY < lastChrSrcY + 1) {
471 for (
i = chrStart;
i < chrEnd; ++
i)
475 lastInChrBuf = lastChrSrcY;
487 if (dstY >=
c->dstH - 2) {
491 &yuv2packed1, &yuv2packed2, &yuv2packedX, &yuv2anyX);
494 yuv2packed1, yuv2packed2, yuv2packedX, yuv2anyX, use_mmx_vfilter);
497 for (
i = vStart;
i < vEnd; ++
i)
501 int offset = lastDstY - dstSliceY;
503 int height = dstY - lastDstY;
508 1,
desc->comp[3].depth,
510 }
else if (
is32BPS(dstFormat)) {
513 1,
desc->comp[3].depth,
519 #if HAVE_MMXEXT_INLINE
521 __asm__ volatile (
"sfence" :::
"memory");
527 c->lastInLumBuf = lastInLumBuf;
528 c->lastInChrBuf = lastInChrBuf;
530 return dstY - lastDstY;
535 c->lumConvertRange =
NULL;
536 c->chrConvertRange =
NULL;
537 if (
c->srcRange !=
c->dstRange && !
isAnyRGB(
c->dstFormat)) {
538 if (
c->dstBpc <= 14) {
563 &
c->yuv2nv12cX, &
c->yuv2packed1,
564 &
c->yuv2packed2, &
c->yuv2packedX, &
c->yuv2anyX);
568 if (
c->srcBpc == 8) {
569 if (
c->dstBpc <= 14) {
587 c->needs_hcscale = 1;
602 #elif ARCH_LOONGARCH64
620 const int linesizes[4])
627 for (
i = 0;
i < 4;
i++) {
628 int plane =
desc->comp[
i].plane;
629 if (!
data[plane] || !linesizes[plane])
642 for (yp=0; yp<
h; yp++) {
643 for (xp=0; xp+2<
stride; xp+=3) {
644 int x, y, z,
r,
g,
b;
656 x =
c->xyzgamma[x>>4];
657 y =
c->xyzgamma[y>>4];
658 z =
c->xyzgamma[z>>4];
661 r =
c->xyz2rgb_matrix[0][0] * x +
662 c->xyz2rgb_matrix[0][1] * y +
663 c->xyz2rgb_matrix[0][2] * z >> 12;
664 g =
c->xyz2rgb_matrix[1][0] * x +
665 c->xyz2rgb_matrix[1][1] * y +
666 c->xyz2rgb_matrix[1][2] * z >> 12;
667 b =
c->xyz2rgb_matrix[2][0] * x +
668 c->xyz2rgb_matrix[2][1] * y +
669 c->xyz2rgb_matrix[2][2] * z >> 12;
678 AV_WB16(dst + xp + 0,
c->rgbgamma[
r] << 4);
679 AV_WB16(dst + xp + 1,
c->rgbgamma[
g] << 4);
680 AV_WB16(dst + xp + 2,
c->rgbgamma[
b] << 4);
682 AV_WL16(dst + xp + 0,
c->rgbgamma[
r] << 4);
683 AV_WL16(dst + xp + 1,
c->rgbgamma[
g] << 4);
684 AV_WL16(dst + xp + 2,
c->rgbgamma[
b] << 4);
698 for (yp=0; yp<
h; yp++) {
699 for (xp=0; xp+2<
stride; xp+=3) {
700 int x, y, z,
r,
g,
b;
712 r =
c->rgbgammainv[
r>>4];
713 g =
c->rgbgammainv[
g>>4];
714 b =
c->rgbgammainv[
b>>4];
717 x =
c->rgb2xyz_matrix[0][0] *
r +
718 c->rgb2xyz_matrix[0][1] *
g +
719 c->rgb2xyz_matrix[0][2] *
b >> 12;
720 y =
c->rgb2xyz_matrix[1][0] *
r +
721 c->rgb2xyz_matrix[1][1] *
g +
722 c->rgb2xyz_matrix[1][2] *
b >> 12;
723 z =
c->rgb2xyz_matrix[2][0] *
r +
724 c->rgb2xyz_matrix[2][1] *
g +
725 c->rgb2xyz_matrix[2][2] *
b >> 12;
734 AV_WB16(dst + xp + 0,
c->xyzgammainv[x] << 4);
735 AV_WB16(dst + xp + 1,
c->xyzgammainv[y] << 4);
736 AV_WB16(dst + xp + 2,
c->xyzgammainv[z] << 4);
738 AV_WL16(dst + xp + 0,
c->xyzgammainv[x] << 4);
739 AV_WL16(dst + xp + 1,
c->xyzgammainv[y] << 4);
740 AV_WL16(dst + xp + 2,
c->xyzgammainv[z] << 4);
750 for (
int i = 0;
i < 256;
i++) {
751 int r,
g,
b, y,
u, v,
a = 0xff;
754 a = (p >> 24) & 0xFF;
755 r = (p >> 16) & 0xFF;
760 g = ((
i >> 2) & 7) * 36;
764 g = ((
i >> 3) & 7) * 36;
767 r = (
i >> 3 ) * 255;
768 g = ((
i >> 1) & 3) * 85;
774 b = (
i >> 3 ) * 255;
775 g = ((
i >> 1) & 3) * 85;
778 #define RGB2YUV_SHIFT 15
779 #define BY ( (int) (0.114 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
780 #define BV (-(int) (0.081 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
781 #define BU ( (int) (0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
782 #define GY ( (int) (0.587 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
783 #define GV (-(int) (0.419 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
784 #define GU (-(int) (0.331 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
785 #define RY ( (int) (0.299 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
786 #define RV ( (int) (0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
787 #define RU (-(int) (0.169 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
792 c->pal_yuv[
i]= y + (
u<<8) + (v<<16) + ((unsigned)
a<<24);
794 switch (
c->dstFormat) {
799 c->pal_rgb[
i]=
r + (
g<<8) + (
b<<16) + ((unsigned)
a<<24);
805 c->pal_rgb[
i]=
a + (
r<<8) + (
g<<16) + ((unsigned)
b<<24);
811 c->pal_rgb[
i]=
a + (
b<<8) + (
g<<16) + ((unsigned)
r<<24);
818 c->pal_rgb[
i]=
b + (
g<<8) + (
r<<16) + ((unsigned)
a<<24);
824 const uint8_t *
const srcSlice[],
const int srcStride[],
826 uint8_t *
const dstSlice[],
const int dstStride[],
827 int dstSliceY,
int dstSliceH);
830 const uint8_t *
const srcSlice[],
const int srcStride[],
832 uint8_t *
const dstSlice[],
const int dstStride[],
833 int dstSliceY,
int dstSliceH)
836 srcSlice, srcStride, srcSliceY,
srcSliceH,
837 c->cascaded_tmp,
c->cascaded_tmpStride, 0,
c->srcH);
842 if (
c->cascaded_context[2])
845 c->cascaded1_tmp,
c->cascaded1_tmpStride, 0,
c->dstH);
849 dstSlice, dstStride, dstSliceY, dstSliceH);
854 if (
c->cascaded_context[2]) {
856 c->cascaded1_tmpStride,
c->cascaded_context[1]->dstY -
ret,
857 c->cascaded_context[1]->dstY,
858 dstSlice, dstStride, dstSliceY, dstSliceH);
864 const uint8_t *
const srcSlice[],
const int srcStride[],
866 uint8_t *
const dstSlice[],
const int dstStride[],
867 int dstSliceY,
int dstSliceH)
870 srcSlice, srcStride, srcSliceY,
srcSliceH,
871 c->cascaded_tmp,
c->cascaded_tmpStride,
872 0,
c->cascaded_context[0]->dstH);
876 (
const uint8_t *
const * )
c->cascaded_tmp,
c->cascaded_tmpStride,
877 0,
c->cascaded_context[0]->dstH,
878 dstSlice, dstStride, dstSliceY, dstSliceH);
883 const uint8_t *
const srcSlice[],
const int srcStride[],
885 uint8_t *
const dstSlice[],
const int dstStride[],
886 int dstSliceY,
int dstSliceH)
888 const int scale_dst = dstSliceY > 0 || dstSliceH <
c->dstH;
891 const uint8_t *
src2[4];
893 int macro_height_src =
isBayer(
c->srcFormat) ? 2 : (1 <<
c->chrSrcVSubSample);
894 int macro_height_dst =
isBayer(
c->dstFormat) ? 2 : (1 <<
c->chrDstVSubSample);
898 int srcSliceY_internal = srcSliceY;
900 if (!srcStride || !dstStride || !dstSlice || !srcSlice) {
901 av_log(
c,
AV_LOG_ERROR,
"One of the input parameters to sws_scale() is NULL, please check the calling code\n");
905 if ((srcSliceY & (macro_height_src - 1)) ||
913 if ((dstSliceY & (macro_height_dst - 1)) ||
914 ((dstSliceH & (macro_height_dst - 1)) && dstSliceY + dstSliceH !=
c->dstH) ||
915 dstSliceY + dstSliceH >
c->dstH) {
933 if (
c->gamma_flag &&
c->cascaded_context[0])
935 dstSlice, dstStride, dstSliceY, dstSliceH);
937 if (
c->cascaded_context[0] && srcSliceY == 0 &&
srcSliceH ==
c->cascaded_context[0]->srcH)
939 dstSlice, dstStride, dstSliceY, dstSliceH);
942 for (
i = 0;
i < 4;
i++)
943 memset(
c->dither_error[
i], 0,
sizeof(
c->dither_error[0][0]) * (
c->dstW+2));
948 memcpy(
src2, srcSlice,
sizeof(
src2));
949 memcpy(dst2, dstSlice,
sizeof(dst2));
950 memcpy(srcStride2, srcStride,
sizeof(srcStride2));
951 memcpy(dstStride2, dstStride,
sizeof(dstStride2));
954 if (srcSliceY != 0 && srcSliceY +
srcSliceH !=
c->srcH) {
959 c->sliceDir = (srcSliceY == 0) ? 1 : -1;
960 }
else if (scale_dst)
963 if (
c->src0Alpha && !
c->dst0Alpha &&
isALPHA(
c->dstFormat)) {
969 if (!
c->rgb0_scratch)
972 base = srcStride[0] < 0 ?
c->rgb0_scratch - srcStride[0] * (
srcSliceH-1) :
975 memcpy(
base + srcStride[0]*y,
src2[0] + srcStride[0]*y, 4*
c->srcW);
976 for (x=
c->src0Alpha-1; x<4*c->srcW; x+=4) {
977 base[ srcStride[0]*y + x] = 0xFF;
983 if (
c->srcXYZ && !(
c->dstXYZ &&
c->srcW==
c->dstW &&
c->srcH==
c->dstH)) {
991 base = srcStride[0] < 0 ?
c->xyz_scratch - srcStride[0] * (
srcSliceH-1) :
998 if (
c->sliceDir != 1) {
1000 for (
i=0;
i<4;
i++) {
1001 srcStride2[
i] *= -1;
1002 dstStride2[
i] *= -1;
1007 src2[1] += ((
srcSliceH >>
c->chrSrcVSubSample) - 1) * srcStride[1];
1008 src2[2] += ((
srcSliceH >>
c->chrSrcVSubSample) - 1) * srcStride[2];
1010 dst2[0] += (
c->dstH - 1) * dstStride[0];
1011 dst2[1] += ((
c->dstH >>
c->chrDstVSubSample) - 1) * dstStride[1];
1012 dst2[2] += ((
c->dstH >>
c->chrDstVSubSample) - 1) * dstStride[2];
1013 dst2[3] += (
c->dstH - 1) * dstStride[3];
1015 srcSliceY_internal =
c->srcH-srcSliceY-
srcSliceH;
1020 if (
c->convert_unscaled) {
1021 int offset = srcSliceY_internal;
1027 for (
i = 0;
i < 4 &&
src2[
i];
i++) {
1030 src2[
i] += (dstSliceY >> ((
i == 1 ||
i == 2) ?
c->chrSrcVSubSample : 0)) * srcStride2[
i];
1033 for (
i = 0;
i < 4 && dst2[
i];
i++) {
1034 if (!dst2[
i] || (
i > 0 &&
usePal(
c->dstFormat)))
1036 dst2[
i] -= (dstSliceY >> ((
i == 1 ||
i == 2) ?
c->chrDstVSubSample : 0)) * dstStride2[
i];
1039 slice_h = dstSliceH;
1045 dst2[0] += dstSliceY * dstStride2[0];
1048 dst2, dstStride2, dstSliceY, dstSliceH);
1051 if (
c->dstXYZ && !(
c->srcXYZ &&
c->srcW==
c->dstW &&
c->srcH==
c->dstH)) {
1055 dst16 = (uint16_t *)dst2[0];
1057 int dstY =
c->dstY ?
c->dstY : srcSliceY +
srcSliceH;
1062 dst16 = (uint16_t*)(dst2[0] + (dstY -
ret) * dstStride2[0]);
1070 if ((srcSliceY_internal +
srcSliceH ==
c->srcH) || scale_dst)
1080 c->src_ranges.nb_ranges = 0;
1085 int ret, allocated = 0;
1114 unsigned int slice_height)
1128 return c->slice_ctx[0]->dst_slice_align;
1130 return c->dst_slice_align;
1134 unsigned int slice_height)
1140 if (!(
c->src_ranges.nb_ranges == 1 &&
1141 c->src_ranges.ranges[0].start == 0 &&
1142 c->src_ranges.ranges[0].len ==
c->srcH))
1145 if ((
slice_start > 0 || slice_height < c->dstH) &&
1148 "Incorrectly aligned output: %u/%u not multiples of %u\n",
1153 if (
c->slicethread) {
1154 int nb_jobs =
c->slice_ctx[0]->dither ==
SWS_DITHER_ED ? 1 :
c->nb_slice_ctx;
1158 c->dst_slice_height = slice_height;
1162 for (
int i = 0;
i <
c->nb_slice_ctx;
i++) {
1163 if (
c->slice_err[
i] < 0) {
1164 ret =
c->slice_err[
i];
1169 memset(
c->slice_err, 0,
c->nb_slice_ctx *
sizeof(*
c->slice_err));
1175 ptrdiff_t
offset =
c->frame_dst->linesize[
i] * (ptrdiff_t)(
slice_start >>
c->chrDstVSubSample);
1180 c->frame_src->linesize, 0,
c->srcH,
1181 dst,
c->frame_dst->linesize,
slice_start, slice_height);
1206 const uint8_t *
const srcSlice[],
1207 const int srcStride[],
int srcSliceY,
1209 const int dstStride[])
1211 if (
c->nb_slice_ctx)
1212 c =
c->slice_ctx[0];
1215 dst, dstStride, 0,
c->dstH);
1219 int nb_jobs,
int nb_threads)
1225 c->dst_slice_align);
1231 uint8_t *dst[4] = {
NULL };
1234 const int vshift = (
i == 1 ||
i == 2) ?
c->chrDstVSubSample : 0;
static av_always_inline int isBayer(enum AVPixelFormat pix_fmt)
void(* yuv2packed2_fn)(struct SwsContext *c, const int16_t *lumSrc[2], const int16_t *chrUSrc[2], const int16_t *chrVSrc[2], const int16_t *alpSrc[2], uint8_t *dest, int dstW, int yalpha, int uvalpha, int y)
Write one line of horizontally scaled Y/U/V/A to packed-pixel YUV/RGB output by doing bilinear scalin...
void(* yuv2planar1_fn)(const int16_t *src, uint8_t *dest, int dstW, const uint8_t *dither, int offset)
Write one line of horizontally scaled data to planar output without any additional vertical scaling (...
#define AV_LOG_WARNING
Something somehow does not look correct.
static void process(NormalizeContext *s, AVFrame *in, AVFrame *out)
void(* yuv2packed1_fn)(struct SwsContext *c, const int16_t *lumSrc, const int16_t *chrUSrc[2], const int16_t *chrVSrc[2], const int16_t *alpSrc, uint8_t *dest, int dstW, int uvalpha, int y)
Write one line of horizontally scaled Y/U/V/A to packed-pixel YUV/RGB output without any additional v...
AVPixelFormat
Pixel format.
int sliceH
number of lines
static void hScale16To19_c(SwsContext *c, int16_t *_dst, int dstW, const uint8_t *_src, const int16_t *filter, const int32_t *filterPos, int filterSize)
static av_always_inline int isPacked(enum AVPixelFormat pix_fmt)
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
int av_frame_get_buffer(AVFrame *frame, int align)
Allocate new buffer(s) for audio or video data.
static void chrRangeFromJpeg16_c(int16_t *_dstU, int16_t *_dstV, int width)
#define u(width, name, range_min, range_max)
const AVPixFmtDescriptor * av_pix_fmt_desc_get(enum AVPixelFormat pix_fmt)
void ff_hyscale_fast_c(SwsContext *c, int16_t *dst, int dstWidth, const uint8_t *src, int srcW, int xInc)
int ff_rotate_slice(SwsSlice *s, int lum, int chr)
#define AV_PIX_FMT_FLAG_FLOAT
The pixel format contains IEEE-754 floating point values.
SwsPlane plane[MAX_SLICE_PLANES]
color planes
void avpriv_slicethread_execute(AVSliceThread *ctx, int nb_jobs, int execute_main)
Execute slice threading.
This structure describes decoded (raw) audio or video data.
static void hScale8To15_c(SwsContext *c, int16_t *dst, int dstW, const uint8_t *src, const int16_t *filter, const int32_t *filterPos, int filterSize)
void ff_sws_init_input_funcs(SwsContext *c)
Struct which holds all necessary data for processing a slice.
static void FUNC() yuv2planeX(const int16_t *filter, int filterSize, const int16_t **src, uint8_t *dest, int dstW, const uint8_t *dither, int offset)
@ AV_PIX_FMT_MONOWHITE
Y , 1bpp, 0 is white, 1 is black, in each byte pixels are ordered from the msb to the lsb.
#define AV_PIX_FMT_RGB32_1
@ AV_PIX_FMT_BGR24
packed RGB 8:8:8, 24bpp, BGRBGR...
int attribute_align_arg sws_scale(struct SwsContext *c, const uint8_t *const srcSlice[], const int srcStride[], int srcSliceY, int srcSliceH, uint8_t *const dst[], const int dstStride[])
swscale wrapper, so we don't need to export the SwsContext.
filter_frame For filters that do not use the this method is called when a frame is pushed to the filter s input It can be called at any time except in a reentrant way If the input frame is enough to produce then the filter should push the output frames on the output link immediately As an exception to the previous rule if the input frame is enough to produce several output frames then the filter needs output only at least one per link The additional frames can be left buffered in the filter
int av_get_cpu_flags(void)
Return the flags which specify extensions supported by the CPU.
#define DEBUG_BUFFERS(...)
static int scale_internal(SwsContext *c, const uint8_t *const srcSlice[], const int srcStride[], int srcSliceY, int srcSliceH, uint8_t *const dstSlice[], const int dstStride[], int dstSliceY, int dstSliceH)
AVBufferRef * buf[AV_NUM_DATA_POINTERS]
AVBuffer references backing the data for this frame.
static atomic_int cpu_flags
int sws_send_slice(struct SwsContext *c, unsigned int slice_start, unsigned int slice_height)
Indicate that a horizontal slice of input data is available in the source frame previously provided t...
static int scale_cascaded(SwsContext *c, const uint8_t *const srcSlice[], const int srcStride[], int srcSliceY, int srcSliceH, uint8_t *const dstSlice[], const int dstStride[], int dstSliceY, int dstSliceH)
static void xyz12Torgb48(struct SwsContext *c, uint16_t *dst, const uint16_t *src, int stride, int h)
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
int sws_receive_slice(struct SwsContext *c, unsigned int slice_start, unsigned int slice_height)
Request a horizontal slice of the output data to be written into the frame previously provided to sws...
#define SWS_FAST_BILINEAR
static av_always_inline int is16BPS(enum AVPixelFormat pix_fmt)
av_cold void ff_sws_init_swscale_aarch64(SwsContext *c)
void(* yuv2anyX_fn)(struct SwsContext *c, const int16_t *lumFilter, const int16_t **lumSrc, int lumFilterSize, const int16_t *chrFilter, const int16_t **chrUSrc, const int16_t **chrVSrc, int chrFilterSize, const int16_t **alpSrc, uint8_t **dest, int dstW, int y)
Write one line of horizontally scaled Y/U/V/A to YUV/RGB output by doing multi-point vertical scaling...
static void hScale8To19_c(SwsContext *c, int16_t *_dst, int dstW, const uint8_t *src, const int16_t *filter, const int32_t *filterPos, int filterSize)
static double val(void *priv, double ch)
static av_always_inline int isNBPS(enum AVPixelFormat pix_fmt)
static int slice_start(SliceContext *sc, VVCContext *s, VVCFrameContext *fc, const CodedBitstreamUnit *unit, const int is_first_slice)
@ AV_PIX_FMT_BGR8
packed RGB 3:3:2, 8bpp, (msb)2B 3G 3R(lsb)
static int frame_start(MpegEncContext *s)
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
#define FF_ARRAY_ELEMS(a)
av_cold void ff_sws_init_swscale_loongarch(SwsContext *c)
static av_cold void sws_init_swscale(SwsContext *c)
int sws_frame_start(struct SwsContext *c, AVFrame *dst, const AVFrame *src)
Initialize the scaling process for a given pair of source/destination frames.
#define AV_CEIL_RSHIFT(a, b)
av_cold void ff_sws_init_swscale_arm(SwsContext *c)
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample format(the sample packing is implied by the sample format) and sample rate. The lists are not just lists
static enum AVPixelFormat pix_fmt
int width
Slice line width.
static int slice_end(AVCodecContext *avctx, AVFrame *pict)
Handle slice ends.
#define av_assert0(cond)
assert() equivalent, that is always enabled.
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_WL32 unsigned int_TMPL AV_WL24 unsigned int_TMPL AV_RL16
static int scale_gamma(SwsContext *c, const uint8_t *const srcSlice[], const int srcStride[], int srcSliceY, int srcSliceH, uint8_t *const dstSlice[], const int dstStride[], int dstSliceY, int dstSliceH)
static void lumRangeFromJpeg_c(int16_t *dst, int width)
void ff_init_vscale_pfn(SwsContext *c, yuv2planar1_fn yuv2plane1, yuv2planarX_fn yuv2planeX, yuv2interleavedX_fn yuv2nv12cX, yuv2packed1_fn yuv2packed1, yuv2packed2_fn yuv2packed2, yuv2packedX_fn yuv2packedX, yuv2anyX_fn yuv2anyX, int use_mmx)
setup vertical scaler functions
#define AV_PIX_FMT_BGR32_1
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
av_cold void ff_sws_init_range_convert(SwsContext *c)
@ AV_PIX_FMT_GRAY8A
alias for AV_PIX_FMT_YA8
static av_always_inline void fillPlane(uint8_t *plane, int stride, int width, int height, int y, uint8_t val)
int available_lines
max number of lines that can be hold by this plane
av_cold void ff_sws_init_swscale_x86(SwsContext *c)
@ AV_PIX_FMT_MONOBLACK
Y , 1bpp, 0 is black, 1 is white, in each byte pixels are ordered from the msb to the lsb.
#define FF_PTR_ADD(ptr, off)
@ AV_PIX_FMT_RGB8
packed RGB 3:3:2, 8bpp, (msb)3R 3G 2B(lsb)
@ AV_PIX_FMT_GRAY8
Y , 8bpp.
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
@ AV_PIX_FMT_BGR4_BYTE
packed RGB 1:2:1, 8bpp, (msb)1B 2G 1R(lsb)
int ff_range_add(RangeList *r, unsigned int start, unsigned int len)
static void chrRangeToJpeg_c(int16_t *dstU, int16_t *dstV, int width)
#define attribute_align_arg
#define AV_CPU_FLAG_SSE2
PIV SSE2 functions.
void ff_sws_slice_worker(void *priv, int jobnr, int threadnr, int nb_jobs, int nb_threads)
static av_always_inline int isBE(enum AVPixelFormat pix_fmt)
static void update_palette(SwsContext *c, const uint32_t *pal)
@ AV_PIX_FMT_RGB24
packed RGB 8:8:8, 24bpp, RGBRGB...
void ff_sws_init_scale(SwsContext *c)
int av_frame_ref(AVFrame *dst, const AVFrame *src)
Set up a new reference to the data described by the source frame.
#define DECLARE_ALIGNED(n, t, v)
static void fillPlane16(uint8_t *plane, int stride, int width, int height, int y, int alpha, int bits, const int big_endian)
static av_always_inline int usePal(enum AVPixelFormat pix_fmt)
static av_always_inline int isAnyRGB(enum AVPixelFormat pix_fmt)
static void hScale16To15_c(SwsContext *c, int16_t *dst, int dstW, const uint8_t *_src, const int16_t *filter, const int32_t *filterPos, int filterSize)
struct SwsContext ** slice_ctx
static void chrRangeToJpeg16_c(int16_t *_dstU, int16_t *_dstV, int width)
int format
format of the frame, -1 if unknown or unset Values correspond to enum AVPixelFormat for video frames,...
static const uint8_t *BS_FUNC() align(BSCTX *bc)
Skip bits to a byte boundary.
static av_always_inline int is32BPS(enum AVPixelFormat pix_fmt)
The reader does not expect b to be semantically here and if the code is changed by maybe adding a a division or other the signedness will almost certainly be mistaken To avoid this confusion a new type was SUINT is the C unsigned type but it holds a signed int to use the same example SUINT a
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf offset
void ff_hcscale_fast_c(SwsContext *c, int16_t *dst1, int16_t *dst2, int dstWidth, const uint8_t *src1, const uint8_t *src2, int srcW, int xInc)
static void fillPlane32(uint8_t *plane, int stride, int width, int height, int y, int alpha, int bits, const int big_endian, int is_float)
int sws_scale_frame(struct SwsContext *c, AVFrame *dst, const AVFrame *src)
Scale source data from src and write the output to dst.
#define av_assert2(cond)
assert() equivalent, that does lie in speed critical code.
#define i(width, name, range_min, range_max)
unsigned int sws_receive_slice_alignment(const struct SwsContext *c)
Get the alignment required for slices.
#define av_assert1(cond)
assert() equivalent, that does not lie in speed critical code.
static int check_image_pointers(const uint8_t *const data[4], enum AVPixelFormat pix_fmt, const int linesizes[4])
void(* yuv2interleavedX_fn)(enum AVPixelFormat dstFormat, const uint8_t *chrDither, const int16_t *chrFilter, int chrFilterSize, const int16_t **chrUSrc, const int16_t **chrVSrc, uint8_t *dest, int dstW)
Write one line of horizontally scaled chroma to interleaved output with multi-point vertical scaling ...
#define AV_PIX_FMT_FLAG_BE
Pixel format is big-endian.
void av_frame_unref(AVFrame *frame)
Unreference all the buffers referenced by frame and reset the frame fields.
@ AV_PIX_FMT_RGB4_BYTE
packed RGB 1:2:1, 8bpp, (msb)1R 2G 1B(lsb)
Struct which defines a slice of an image to be scaled or an output for a scaled slice.
int ff_init_slice_from_src(SwsSlice *s, uint8_t *src[4], int stride[4], int srcW, int lumY, int lumH, int chrY, int chrH, int relative)
@ AV_PIX_FMT_PAL8
8 bits with AV_PIX_FMT_RGB32 palette
__asm__(".macro parse_r var r\n\t" "\\var = -1\n\t" _IFC_REG(0) _IFC_REG(1) _IFC_REG(2) _IFC_REG(3) _IFC_REG(4) _IFC_REG(5) _IFC_REG(6) _IFC_REG(7) _IFC_REG(8) _IFC_REG(9) _IFC_REG(10) _IFC_REG(11) _IFC_REG(12) _IFC_REG(13) _IFC_REG(14) _IFC_REG(15) _IFC_REG(16) _IFC_REG(17) _IFC_REG(18) _IFC_REG(19) _IFC_REG(20) _IFC_REG(21) _IFC_REG(22) _IFC_REG(23) _IFC_REG(24) _IFC_REG(25) _IFC_REG(26) _IFC_REG(27) _IFC_REG(28) _IFC_REG(29) _IFC_REG(30) _IFC_REG(31) ".iflt \\var\n\t" ".error \"Unable to parse register name \\r\"\n\t" ".endif\n\t" ".endm")
static const uint8_t sws_pb_64[8]
void sws_frame_end(struct SwsContext *c)
Finish the scaling process for a pair of source/destination frames previously submitted with sws_fram...
av_cold void ff_sws_init_swscale_ppc(SwsContext *c)
void(* yuv2planarX_fn)(const int16_t *filter, int filterSize, const int16_t **src, uint8_t *dest, int dstW, const uint8_t *dither, int offset)
Write one line of horizontally scaled data to planar output with multi-point vertical scaling between...
void ff_sws_init_output_funcs(SwsContext *c, yuv2planar1_fn *yuv2plane1, yuv2planarX_fn *yuv2planeX, yuv2interleavedX_fn *yuv2nv12cX, yuv2packed1_fn *yuv2packed1, yuv2packed2_fn *yuv2packed2, yuv2packedX_fn *yuv2packedX, yuv2anyX_fn *yuv2anyX)
static av_always_inline int isALPHA(enum AVPixelFormat pix_fmt)
static void reset_ptr(const uint8_t *src[], enum AVPixelFormat format)
void(* yuv2packedX_fn)(struct SwsContext *c, const int16_t *lumFilter, const int16_t **lumSrc, int lumFilterSize, const int16_t *chrFilter, const int16_t **chrUSrc, const int16_t **chrVSrc, int chrFilterSize, const int16_t **alpSrc, uint8_t *dest, int dstW, int y)
Write one line of horizontally scaled Y/U/V/A to packed-pixel YUV/RGB output by doing multi-point ver...
#define atomic_exchange_explicit(object, desired, order)
static int swscale(SwsContext *c, const uint8_t *src[], int srcStride[], int srcSliceY, int srcSliceH, uint8_t *dst[], int dstStride[], int dstSliceY, int dstSliceH)
const uint8_t ff_dither_8x8_128[9][8]
#define AV_CPU_FLAG_MMXEXT
SSE integer functions or AMD MMX ext.
static void lumRangeToJpeg_c(int16_t *dst, int width)
static void lumRangeFromJpeg16_c(int16_t *_dst, int width)
static void lumRangeToJpeg16_c(int16_t *_dst, int width)
int sliceY
index of first line
Descriptor that unambiguously describes how the bits of a pixel are stored in the up to 4 data planes...
static void chrRangeFromJpeg_c(int16_t *dstU, int16_t *dstV, int width)
void av_fast_malloc(void *ptr, unsigned int *size, size_t min_size)
Allocate a buffer, reusing the given one if large enough.
#define flags(name, subs,...)
int linesize[AV_NUM_DATA_POINTERS]
For video, a positive or negative value, which is typically indicating the size in bytes of each pict...
void ff_updateMMXDitherTables(SwsContext *c, int dstY)
static av_always_inline int isPlanar(enum AVPixelFormat pix_fmt)
static void rgb48Toxyz12(struct SwsContext *c, uint16_t *dst, const uint16_t *src, int stride, int h)
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_WL32 unsigned int_TMPL AV_WL24 unsigned int_TMPL AV_WL16 uint64_t_TMPL AV_WB64 unsigned int_TMPL AV_WB32 unsigned int_TMPL AV_WB24 unsigned int_TMPL AV_RB16