FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
h264_slice.c
Go to the documentation of this file.
1 /*
2  * H.26L/H.264/AVC/JVT/14496-10/... decoder
3  * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 /**
23  * @file
24  * H.264 / AVC / MPEG-4 part10 codec.
25  * @author Michael Niedermayer <michaelni@gmx.at>
26  */
27 
28 #include "libavutil/avassert.h"
29 #include "libavutil/display.h"
30 #include "libavutil/imgutils.h"
31 #include "libavutil/stereo3d.h"
32 #include "libavutil/timer.h"
33 #include "internal.h"
34 #include "cabac.h"
35 #include "cabac_functions.h"
36 #include "error_resilience.h"
37 #include "avcodec.h"
38 #include "h264.h"
39 #include "h264dec.h"
40 #include "h264data.h"
41 #include "h264chroma.h"
42 #include "h264_mvpred.h"
43 #include "h264_ps.h"
44 #include "golomb.h"
45 #include "mathops.h"
46 #include "mpegutils.h"
47 #include "mpegvideo.h"
48 #include "rectangle.h"
49 #include "thread.h"
50 
51 static const uint8_t field_scan[16+1] = {
52  0 + 0 * 4, 0 + 1 * 4, 1 + 0 * 4, 0 + 2 * 4,
53  0 + 3 * 4, 1 + 1 * 4, 1 + 2 * 4, 1 + 3 * 4,
54  2 + 0 * 4, 2 + 1 * 4, 2 + 2 * 4, 2 + 3 * 4,
55  3 + 0 * 4, 3 + 1 * 4, 3 + 2 * 4, 3 + 3 * 4,
56 };
57 
58 static const uint8_t field_scan8x8[64+1] = {
59  0 + 0 * 8, 0 + 1 * 8, 0 + 2 * 8, 1 + 0 * 8,
60  1 + 1 * 8, 0 + 3 * 8, 0 + 4 * 8, 1 + 2 * 8,
61  2 + 0 * 8, 1 + 3 * 8, 0 + 5 * 8, 0 + 6 * 8,
62  0 + 7 * 8, 1 + 4 * 8, 2 + 1 * 8, 3 + 0 * 8,
63  2 + 2 * 8, 1 + 5 * 8, 1 + 6 * 8, 1 + 7 * 8,
64  2 + 3 * 8, 3 + 1 * 8, 4 + 0 * 8, 3 + 2 * 8,
65  2 + 4 * 8, 2 + 5 * 8, 2 + 6 * 8, 2 + 7 * 8,
66  3 + 3 * 8, 4 + 1 * 8, 5 + 0 * 8, 4 + 2 * 8,
67  3 + 4 * 8, 3 + 5 * 8, 3 + 6 * 8, 3 + 7 * 8,
68  4 + 3 * 8, 5 + 1 * 8, 6 + 0 * 8, 5 + 2 * 8,
69  4 + 4 * 8, 4 + 5 * 8, 4 + 6 * 8, 4 + 7 * 8,
70  5 + 3 * 8, 6 + 1 * 8, 6 + 2 * 8, 5 + 4 * 8,
71  5 + 5 * 8, 5 + 6 * 8, 5 + 7 * 8, 6 + 3 * 8,
72  7 + 0 * 8, 7 + 1 * 8, 6 + 4 * 8, 6 + 5 * 8,
73  6 + 6 * 8, 6 + 7 * 8, 7 + 2 * 8, 7 + 3 * 8,
74  7 + 4 * 8, 7 + 5 * 8, 7 + 6 * 8, 7 + 7 * 8,
75 };
76 
77 static const uint8_t field_scan8x8_cavlc[64+1] = {
78  0 + 0 * 8, 1 + 1 * 8, 2 + 0 * 8, 0 + 7 * 8,
79  2 + 2 * 8, 2 + 3 * 8, 2 + 4 * 8, 3 + 3 * 8,
80  3 + 4 * 8, 4 + 3 * 8, 4 + 4 * 8, 5 + 3 * 8,
81  5 + 5 * 8, 7 + 0 * 8, 6 + 6 * 8, 7 + 4 * 8,
82  0 + 1 * 8, 0 + 3 * 8, 1 + 3 * 8, 1 + 4 * 8,
83  1 + 5 * 8, 3 + 1 * 8, 2 + 5 * 8, 4 + 1 * 8,
84  3 + 5 * 8, 5 + 1 * 8, 4 + 5 * 8, 6 + 1 * 8,
85  5 + 6 * 8, 7 + 1 * 8, 6 + 7 * 8, 7 + 5 * 8,
86  0 + 2 * 8, 0 + 4 * 8, 0 + 5 * 8, 2 + 1 * 8,
87  1 + 6 * 8, 4 + 0 * 8, 2 + 6 * 8, 5 + 0 * 8,
88  3 + 6 * 8, 6 + 0 * 8, 4 + 6 * 8, 6 + 2 * 8,
89  5 + 7 * 8, 6 + 4 * 8, 7 + 2 * 8, 7 + 6 * 8,
90  1 + 0 * 8, 1 + 2 * 8, 0 + 6 * 8, 3 + 0 * 8,
91  1 + 7 * 8, 3 + 2 * 8, 2 + 7 * 8, 4 + 2 * 8,
92  3 + 7 * 8, 5 + 2 * 8, 4 + 7 * 8, 5 + 4 * 8,
93  6 + 3 * 8, 6 + 5 * 8, 7 + 3 * 8, 7 + 7 * 8,
94 };
95 
96 // zigzag_scan8x8_cavlc[i] = zigzag_scan8x8[(i/4) + 16*(i%4)]
97 static const uint8_t zigzag_scan8x8_cavlc[64+1] = {
98  0 + 0 * 8, 1 + 1 * 8, 1 + 2 * 8, 2 + 2 * 8,
99  4 + 1 * 8, 0 + 5 * 8, 3 + 3 * 8, 7 + 0 * 8,
100  3 + 4 * 8, 1 + 7 * 8, 5 + 3 * 8, 6 + 3 * 8,
101  2 + 7 * 8, 6 + 4 * 8, 5 + 6 * 8, 7 + 5 * 8,
102  1 + 0 * 8, 2 + 0 * 8, 0 + 3 * 8, 3 + 1 * 8,
103  3 + 2 * 8, 0 + 6 * 8, 4 + 2 * 8, 6 + 1 * 8,
104  2 + 5 * 8, 2 + 6 * 8, 6 + 2 * 8, 5 + 4 * 8,
105  3 + 7 * 8, 7 + 3 * 8, 4 + 7 * 8, 7 + 6 * 8,
106  0 + 1 * 8, 3 + 0 * 8, 0 + 4 * 8, 4 + 0 * 8,
107  2 + 3 * 8, 1 + 5 * 8, 5 + 1 * 8, 5 + 2 * 8,
108  1 + 6 * 8, 3 + 5 * 8, 7 + 1 * 8, 4 + 5 * 8,
109  4 + 6 * 8, 7 + 4 * 8, 5 + 7 * 8, 6 + 7 * 8,
110  0 + 2 * 8, 2 + 1 * 8, 1 + 3 * 8, 5 + 0 * 8,
111  1 + 4 * 8, 2 + 4 * 8, 6 + 0 * 8, 4 + 3 * 8,
112  0 + 7 * 8, 4 + 4 * 8, 7 + 2 * 8, 3 + 6 * 8,
113  5 + 5 * 8, 6 + 5 * 8, 6 + 6 * 8, 7 + 7 * 8,
114 };
115 
116 static void release_unused_pictures(H264Context *h, int remove_current)
117 {
118  int i;
119 
120  /* release non reference frames */
121  for (i = 0; i < H264_MAX_PICTURE_COUNT; i++) {
122  if (h->DPB[i].f->buf[0] && !h->DPB[i].reference &&
123  (remove_current || &h->DPB[i] != h->cur_pic_ptr)) {
124  ff_h264_unref_picture(h, &h->DPB[i]);
125  }
126  }
127 }
128 
129 static int alloc_scratch_buffers(H264SliceContext *sl, int linesize)
130 {
131  const H264Context *h = sl->h264;
132  int alloc_size = FFALIGN(FFABS(linesize) + 32, 32);
133 
134  av_fast_malloc(&sl->bipred_scratchpad, &sl->bipred_scratchpad_allocated, 16 * 6 * alloc_size);
135  // edge emu needs blocksize + filter length - 1
136  // (= 21x21 for H.264)
137  av_fast_malloc(&sl->edge_emu_buffer, &sl->edge_emu_buffer_allocated, alloc_size * 2 * 21);
138 
140  h->mb_width * 16 * 3 * sizeof(uint8_t) * 2);
142  h->mb_width * 16 * 3 * sizeof(uint8_t) * 2);
143 
144  if (!sl->bipred_scratchpad || !sl->edge_emu_buffer ||
145  !sl->top_borders[0] || !sl->top_borders[1]) {
148  av_freep(&sl->top_borders[0]);
149  av_freep(&sl->top_borders[1]);
150 
153  sl->top_borders_allocated[0] = 0;
154  sl->top_borders_allocated[1] = 0;
155  return AVERROR(ENOMEM);
156  }
157 
158  return 0;
159 }
160 
162 {
163  const int big_mb_num = h->mb_stride * (h->mb_height + 1) + 1;
164  const int mb_array_size = h->mb_stride * h->mb_height;
165  const int b4_stride = h->mb_width * 4 + 1;
166  const int b4_array_size = b4_stride * h->mb_height * 4;
167 
168  h->qscale_table_pool = av_buffer_pool_init(big_mb_num + h->mb_stride,
170  h->mb_type_pool = av_buffer_pool_init((big_mb_num + h->mb_stride) *
171  sizeof(uint32_t), av_buffer_allocz);
172  h->motion_val_pool = av_buffer_pool_init(2 * (b4_array_size + 4) *
173  sizeof(int16_t), av_buffer_allocz);
174  h->ref_index_pool = av_buffer_pool_init(4 * mb_array_size, av_buffer_allocz);
175 
176  if (!h->qscale_table_pool || !h->mb_type_pool || !h->motion_val_pool ||
177  !h->ref_index_pool) {
182  return AVERROR(ENOMEM);
183  }
184 
185  return 0;
186 }
187 
189 {
190  int i, ret = 0;
191 
192  av_assert0(!pic->f->data[0]);
193 
194  pic->tf.f = pic->f;
195  ret = ff_thread_get_buffer(h->avctx, &pic->tf, pic->reference ?
197  if (ret < 0)
198  goto fail;
199 
200  if (h->avctx->hwaccel) {
201  const AVHWAccel *hwaccel = h->avctx->hwaccel;
203  if (hwaccel->frame_priv_data_size) {
205  if (!pic->hwaccel_priv_buf)
206  return AVERROR(ENOMEM);
208  }
209  }
210  if (CONFIG_GRAY && !h->avctx->hwaccel && h->flags & AV_CODEC_FLAG_GRAY && pic->f->data[2]) {
211  int h_chroma_shift, v_chroma_shift;
213  &h_chroma_shift, &v_chroma_shift);
214 
215  for(i=0; i<AV_CEIL_RSHIFT(pic->f->height, v_chroma_shift); i++) {
216  memset(pic->f->data[1] + pic->f->linesize[1]*i,
217  0x80, AV_CEIL_RSHIFT(pic->f->width, h_chroma_shift));
218  memset(pic->f->data[2] + pic->f->linesize[2]*i,
219  0x80, AV_CEIL_RSHIFT(pic->f->width, h_chroma_shift));
220  }
221  }
222 
223  if (!h->qscale_table_pool) {
224  ret = init_table_pools(h);
225  if (ret < 0)
226  goto fail;
227  }
228 
231  if (!pic->qscale_table_buf || !pic->mb_type_buf)
232  goto fail;
233 
234  pic->mb_type = (uint32_t*)pic->mb_type_buf->data + 2 * h->mb_stride + 1;
235  pic->qscale_table = pic->qscale_table_buf->data + 2 * h->mb_stride + 1;
236 
237  for (i = 0; i < 2; i++) {
240  if (!pic->motion_val_buf[i] || !pic->ref_index_buf[i])
241  goto fail;
242 
243  pic->motion_val[i] = (int16_t (*)[2])pic->motion_val_buf[i]->data + 4;
244  pic->ref_index[i] = pic->ref_index_buf[i]->data;
245  }
246 
247  return 0;
248 fail:
249  ff_h264_unref_picture(h, pic);
250  return (ret < 0) ? ret : AVERROR(ENOMEM);
251 }
252 
254 {
255  int i;
256 
257  for (i = 0; i < H264_MAX_PICTURE_COUNT; i++) {
258  if (!h->DPB[i].f->buf[0])
259  return i;
260  }
261  return AVERROR_INVALIDDATA;
262 }
263 
264 
265 #define IN_RANGE(a, b, size) (((void*)(a) >= (void*)(b)) && ((void*)(a) < (void*)((b) + (size))))
266 
267 #define REBASE_PICTURE(pic, new_ctx, old_ctx) \
268  (((pic) && (pic) >= (old_ctx)->DPB && \
269  (pic) < (old_ctx)->DPB + H264_MAX_PICTURE_COUNT) ? \
270  &(new_ctx)->DPB[(pic) - (old_ctx)->DPB] : NULL)
271 
273  H264Context *new_base,
274  H264Context *old_base)
275 {
276  int i;
277 
278  for (i = 0; i < count; i++) {
279  av_assert1(!from[i] ||
280  IN_RANGE(from[i], old_base, 1) ||
281  IN_RANGE(from[i], old_base->DPB, H264_MAX_PICTURE_COUNT));
282  to[i] = REBASE_PICTURE(from[i], new_base, old_base);
283  }
284 }
285 
287 
289  const AVCodecContext *src)
290 {
291  H264Context *h = dst->priv_data, *h1 = src->priv_data;
292  int inited = h->context_initialized, err = 0;
293  int need_reinit = 0;
294  int i, ret;
295 
296  if (dst == src)
297  return 0;
298 
299  // We can't fail if SPS isn't set at it breaks current skip_frame code
300  //if (!h1->ps.sps)
301  // return AVERROR_INVALIDDATA;
302 
303  if (inited &&
304  (h->width != h1->width ||
305  h->height != h1->height ||
306  h->mb_width != h1->mb_width ||
307  h->mb_height != h1->mb_height ||
308  !h->ps.sps ||
309  h->ps.sps->bit_depth_luma != h1->ps.sps->bit_depth_luma ||
310  h->ps.sps->chroma_format_idc != h1->ps.sps->chroma_format_idc ||
311  h->ps.sps->colorspace != h1->ps.sps->colorspace)) {
312  need_reinit = 1;
313  }
314 
315  /* copy block_offset since frame_start may not be called */
316  memcpy(h->block_offset, h1->block_offset, sizeof(h->block_offset));
317 
318  // SPS/PPS
319  for (i = 0; i < FF_ARRAY_ELEMS(h->ps.sps_list); i++) {
320  av_buffer_unref(&h->ps.sps_list[i]);
321  if (h1->ps.sps_list[i]) {
322  h->ps.sps_list[i] = av_buffer_ref(h1->ps.sps_list[i]);
323  if (!h->ps.sps_list[i])
324  return AVERROR(ENOMEM);
325  }
326  }
327  for (i = 0; i < FF_ARRAY_ELEMS(h->ps.pps_list); i++) {
328  av_buffer_unref(&h->ps.pps_list[i]);
329  if (h1->ps.pps_list[i]) {
330  h->ps.pps_list[i] = av_buffer_ref(h1->ps.pps_list[i]);
331  if (!h->ps.pps_list[i])
332  return AVERROR(ENOMEM);
333  }
334  }
335 
338  h->ps.pps = NULL;
339  h->ps.sps = NULL;
340  if (h1->ps.pps_ref) {
341  h->ps.pps_ref = av_buffer_ref(h1->ps.pps_ref);
342  if (!h->ps.pps_ref)
343  return AVERROR(ENOMEM);
344  h->ps.pps = (const PPS*)h->ps.pps_ref->data;
345  }
346  if (h1->ps.sps_ref) {
347  h->ps.sps_ref = av_buffer_ref(h1->ps.sps_ref);
348  if (!h->ps.sps_ref)
349  return AVERROR(ENOMEM);
350  h->ps.sps = (const SPS*)h->ps.sps_ref->data;
351  }
352 
353  if (need_reinit || !inited) {
354  h->width = h1->width;
355  h->height = h1->height;
356  h->mb_height = h1->mb_height;
357  h->mb_width = h1->mb_width;
358  h->mb_num = h1->mb_num;
359  h->mb_stride = h1->mb_stride;
360  h->b_stride = h1->b_stride;
361 
362  if (h->context_initialized || h1->context_initialized) {
363  if ((err = h264_slice_header_init(h)) < 0) {
364  av_log(h->avctx, AV_LOG_ERROR, "h264_slice_header_init() failed");
365  return err;
366  }
367  }
368 
369  /* copy block_offset since frame_start may not be called */
370  memcpy(h->block_offset, h1->block_offset, sizeof(h->block_offset));
371  }
372 
373  h->avctx->coded_height = h1->avctx->coded_height;
374  h->avctx->coded_width = h1->avctx->coded_width;
375  h->avctx->width = h1->avctx->width;
376  h->avctx->height = h1->avctx->height;
377  h->width_from_caller = h1->width_from_caller;
378  h->height_from_caller = h1->height_from_caller;
379  h->coded_picture_number = h1->coded_picture_number;
380  h->first_field = h1->first_field;
381  h->picture_structure = h1->picture_structure;
382  h->mb_aff_frame = h1->mb_aff_frame;
383  h->droppable = h1->droppable;
384 
385  for (i = 0; i < H264_MAX_PICTURE_COUNT; i++) {
386  ff_h264_unref_picture(h, &h->DPB[i]);
387  if (h1->DPB[i].f->buf[0] &&
388  (ret = ff_h264_ref_picture(h, &h->DPB[i], &h1->DPB[i])) < 0)
389  return ret;
390  }
391 
392  h->cur_pic_ptr = REBASE_PICTURE(h1->cur_pic_ptr, h, h1);
394  if (h1->cur_pic.f->buf[0]) {
395  ret = ff_h264_ref_picture(h, &h->cur_pic, &h1->cur_pic);
396  if (ret < 0)
397  return ret;
398  }
399 
400  h->enable_er = h1->enable_er;
401  h->workaround_bugs = h1->workaround_bugs;
402  h->droppable = h1->droppable;
403 
404  // extradata/NAL handling
405  h->is_avc = h1->is_avc;
406  h->nal_length_size = h1->nal_length_size;
407  h->sei.unregistered.x264_build = h1->sei.unregistered.x264_build;
408 
409  memcpy(&h->poc, &h1->poc, sizeof(h->poc));
410 
411  memcpy(h->short_ref, h1->short_ref, sizeof(h->short_ref));
412  memcpy(h->long_ref, h1->long_ref, sizeof(h->long_ref));
413  memcpy(h->delayed_pic, h1->delayed_pic, sizeof(h->delayed_pic));
414  memcpy(h->last_pocs, h1->last_pocs, sizeof(h->last_pocs));
415 
416  h->next_output_pic = h1->next_output_pic;
417  h->next_outputed_poc = h1->next_outputed_poc;
418 
419  memcpy(h->mmco, h1->mmco, sizeof(h->mmco));
420  h->nb_mmco = h1->nb_mmco;
421  h->mmco_reset = h1->mmco_reset;
422  h->explicit_ref_marking = h1->explicit_ref_marking;
423  h->long_ref_count = h1->long_ref_count;
424  h->short_ref_count = h1->short_ref_count;
425 
426  copy_picture_range(h->short_ref, h1->short_ref, 32, h, h1);
427  copy_picture_range(h->long_ref, h1->long_ref, 32, h, h1);
428  copy_picture_range(h->delayed_pic, h1->delayed_pic,
429  MAX_DELAYED_PIC_COUNT + 2, h, h1);
430 
431  h->frame_recovered = h1->frame_recovered;
432 
433  if (!h->cur_pic_ptr)
434  return 0;
435 
436  if (!h->droppable) {
438  h->poc.prev_poc_msb = h->poc.poc_msb;
439  h->poc.prev_poc_lsb = h->poc.poc_lsb;
440  }
443 
444  h->recovery_frame = h1->recovery_frame;
445 
446  return err;
447 }
448 
450 {
451  H264Picture *pic;
452  int i, ret;
453  const int pixel_shift = h->pixel_shift;
454  int c[4] = {
455  1<<(h->ps.sps->bit_depth_luma-1),
456  1<<(h->ps.sps->bit_depth_chroma-1),
457  1<<(h->ps.sps->bit_depth_chroma-1),
458  -1
459  };
460 
461  if (!ff_thread_can_start_frame(h->avctx)) {
462  av_log(h->avctx, AV_LOG_ERROR, "Attempt to start a frame outside SETUP state\n");
463  return -1;
464  }
465 
467  h->cur_pic_ptr = NULL;
468 
469  i = find_unused_picture(h);
470  if (i < 0) {
471  av_log(h->avctx, AV_LOG_ERROR, "no frame buffer available\n");
472  return i;
473  }
474  pic = &h->DPB[i];
475 
476  pic->reference = h->droppable ? 0 : h->picture_structure;
479  pic->frame_num = h->poc.frame_num;
480  /*
481  * Zero key_frame here; IDR markings per slice in frame or fields are ORed
482  * in later.
483  * See decode_nal_units().
484  */
485  pic->f->key_frame = 0;
486  pic->mmco_reset = 0;
487  pic->recovered = 0;
488  pic->invalid_gap = 0;
490 
491  pic->f->pict_type = h->slice_ctx[0].slice_type;
492 
493  pic->f->crop_left = h->crop_left;
494  pic->f->crop_right = h->crop_right;
495  pic->f->crop_top = h->crop_top;
496  pic->f->crop_bottom = h->crop_bottom;
497 
498  if ((ret = alloc_picture(h, pic)) < 0)
499  return ret;
500  if(!h->frame_recovered && !h->avctx->hwaccel
503 #endif
504  )
505  ff_color_frame(pic->f, c);
506 
507  h->cur_pic_ptr = pic;
509  if (CONFIG_ERROR_RESILIENCE) {
511  }
512 
513  if ((ret = ff_h264_ref_picture(h, &h->cur_pic, h->cur_pic_ptr)) < 0)
514  return ret;
515 
516  for (i = 0; i < h->nb_slice_ctx; i++) {
517  h->slice_ctx[i].linesize = h->cur_pic_ptr->f->linesize[0];
518  h->slice_ctx[i].uvlinesize = h->cur_pic_ptr->f->linesize[1];
519  }
520 
521  if (CONFIG_ERROR_RESILIENCE && h->enable_er) {
525  }
526 
527  for (i = 0; i < 16; i++) {
528  h->block_offset[i] = (4 * ((scan8[i] - scan8[0]) & 7) << pixel_shift) + 4 * pic->f->linesize[0] * ((scan8[i] - scan8[0]) >> 3);
529  h->block_offset[48 + i] = (4 * ((scan8[i] - scan8[0]) & 7) << pixel_shift) + 8 * pic->f->linesize[0] * ((scan8[i] - scan8[0]) >> 3);
530  }
531  for (i = 0; i < 16; i++) {
532  h->block_offset[16 + i] =
533  h->block_offset[32 + i] = (4 * ((scan8[i] - scan8[0]) & 7) << pixel_shift) + 4 * pic->f->linesize[1] * ((scan8[i] - scan8[0]) >> 3);
534  h->block_offset[48 + 16 + i] =
535  h->block_offset[48 + 32 + i] = (4 * ((scan8[i] - scan8[0]) & 7) << pixel_shift) + 8 * pic->f->linesize[1] * ((scan8[i] - scan8[0]) >> 3);
536  }
537 
538  /* We mark the current picture as non-reference after allocating it, so
539  * that if we break out due to an error it can be released automatically
540  * in the next ff_mpv_frame_start().
541  */
542  h->cur_pic_ptr->reference = 0;
543 
544  h->cur_pic_ptr->field_poc[0] = h->cur_pic_ptr->field_poc[1] = INT_MAX;
545 
546  h->next_output_pic = NULL;
547 
548  h->postpone_filter = 0;
549 
551 
552  assert(h->cur_pic_ptr->long_ref == 0);
553 
554  return 0;
555 }
556 
558  uint8_t *src_y,
559  uint8_t *src_cb, uint8_t *src_cr,
560  int linesize, int uvlinesize,
561  int simple)
562 {
563  uint8_t *top_border;
564  int top_idx = 1;
565  const int pixel_shift = h->pixel_shift;
566  int chroma444 = CHROMA444(h);
567  int chroma422 = CHROMA422(h);
568 
569  src_y -= linesize;
570  src_cb -= uvlinesize;
571  src_cr -= uvlinesize;
572 
573  if (!simple && FRAME_MBAFF(h)) {
574  if (sl->mb_y & 1) {
575  if (!MB_MBAFF(sl)) {
576  top_border = sl->top_borders[0][sl->mb_x];
577  AV_COPY128(top_border, src_y + 15 * linesize);
578  if (pixel_shift)
579  AV_COPY128(top_border + 16, src_y + 15 * linesize + 16);
580  if (simple || !CONFIG_GRAY || !(h->flags & AV_CODEC_FLAG_GRAY)) {
581  if (chroma444) {
582  if (pixel_shift) {
583  AV_COPY128(top_border + 32, src_cb + 15 * uvlinesize);
584  AV_COPY128(top_border + 48, src_cb + 15 * uvlinesize + 16);
585  AV_COPY128(top_border + 64, src_cr + 15 * uvlinesize);
586  AV_COPY128(top_border + 80, src_cr + 15 * uvlinesize + 16);
587  } else {
588  AV_COPY128(top_border + 16, src_cb + 15 * uvlinesize);
589  AV_COPY128(top_border + 32, src_cr + 15 * uvlinesize);
590  }
591  } else if (chroma422) {
592  if (pixel_shift) {
593  AV_COPY128(top_border + 32, src_cb + 15 * uvlinesize);
594  AV_COPY128(top_border + 48, src_cr + 15 * uvlinesize);
595  } else {
596  AV_COPY64(top_border + 16, src_cb + 15 * uvlinesize);
597  AV_COPY64(top_border + 24, src_cr + 15 * uvlinesize);
598  }
599  } else {
600  if (pixel_shift) {
601  AV_COPY128(top_border + 32, src_cb + 7 * uvlinesize);
602  AV_COPY128(top_border + 48, src_cr + 7 * uvlinesize);
603  } else {
604  AV_COPY64(top_border + 16, src_cb + 7 * uvlinesize);
605  AV_COPY64(top_border + 24, src_cr + 7 * uvlinesize);
606  }
607  }
608  }
609  }
610  } else if (MB_MBAFF(sl)) {
611  top_idx = 0;
612  } else
613  return;
614  }
615 
616  top_border = sl->top_borders[top_idx][sl->mb_x];
617  /* There are two lines saved, the line above the top macroblock
618  * of a pair, and the line above the bottom macroblock. */
619  AV_COPY128(top_border, src_y + 16 * linesize);
620  if (pixel_shift)
621  AV_COPY128(top_border + 16, src_y + 16 * linesize + 16);
622 
623  if (simple || !CONFIG_GRAY || !(h->flags & AV_CODEC_FLAG_GRAY)) {
624  if (chroma444) {
625  if (pixel_shift) {
626  AV_COPY128(top_border + 32, src_cb + 16 * linesize);
627  AV_COPY128(top_border + 48, src_cb + 16 * linesize + 16);
628  AV_COPY128(top_border + 64, src_cr + 16 * linesize);
629  AV_COPY128(top_border + 80, src_cr + 16 * linesize + 16);
630  } else {
631  AV_COPY128(top_border + 16, src_cb + 16 * linesize);
632  AV_COPY128(top_border + 32, src_cr + 16 * linesize);
633  }
634  } else if (chroma422) {
635  if (pixel_shift) {
636  AV_COPY128(top_border + 32, src_cb + 16 * uvlinesize);
637  AV_COPY128(top_border + 48, src_cr + 16 * uvlinesize);
638  } else {
639  AV_COPY64(top_border + 16, src_cb + 16 * uvlinesize);
640  AV_COPY64(top_border + 24, src_cr + 16 * uvlinesize);
641  }
642  } else {
643  if (pixel_shift) {
644  AV_COPY128(top_border + 32, src_cb + 8 * uvlinesize);
645  AV_COPY128(top_border + 48, src_cr + 8 * uvlinesize);
646  } else {
647  AV_COPY64(top_border + 16, src_cb + 8 * uvlinesize);
648  AV_COPY64(top_border + 24, src_cr + 8 * uvlinesize);
649  }
650  }
651  }
652 }
653 
654 /**
655  * Initialize implicit_weight table.
656  * @param field 0/1 initialize the weight for interlaced MBAFF
657  * -1 initializes the rest
658  */
659 static void implicit_weight_table(const H264Context *h, H264SliceContext *sl, int field)
660 {
661  int ref0, ref1, i, cur_poc, ref_start, ref_count0, ref_count1;
662 
663  for (i = 0; i < 2; i++) {
664  sl->pwt.luma_weight_flag[i] = 0;
665  sl->pwt.chroma_weight_flag[i] = 0;
666  }
667 
668  if (field < 0) {
669  if (h->picture_structure == PICT_FRAME) {
670  cur_poc = h->cur_pic_ptr->poc;
671  } else {
672  cur_poc = h->cur_pic_ptr->field_poc[h->picture_structure - 1];
673  }
674  if (sl->ref_count[0] == 1 && sl->ref_count[1] == 1 && !FRAME_MBAFF(h) &&
675  sl->ref_list[0][0].poc + (int64_t)sl->ref_list[1][0].poc == 2 * cur_poc) {
676  sl->pwt.use_weight = 0;
677  sl->pwt.use_weight_chroma = 0;
678  return;
679  }
680  ref_start = 0;
681  ref_count0 = sl->ref_count[0];
682  ref_count1 = sl->ref_count[1];
683  } else {
684  cur_poc = h->cur_pic_ptr->field_poc[field];
685  ref_start = 16;
686  ref_count0 = 16 + 2 * sl->ref_count[0];
687  ref_count1 = 16 + 2 * sl->ref_count[1];
688  }
689 
690  sl->pwt.use_weight = 2;
691  sl->pwt.use_weight_chroma = 2;
692  sl->pwt.luma_log2_weight_denom = 5;
694 
695  for (ref0 = ref_start; ref0 < ref_count0; ref0++) {
696  int64_t poc0 = sl->ref_list[0][ref0].poc;
697  for (ref1 = ref_start; ref1 < ref_count1; ref1++) {
698  int w = 32;
699  if (!sl->ref_list[0][ref0].parent->long_ref && !sl->ref_list[1][ref1].parent->long_ref) {
700  int poc1 = sl->ref_list[1][ref1].poc;
701  int td = av_clip_int8(poc1 - poc0);
702  if (td) {
703  int tb = av_clip_int8(cur_poc - poc0);
704  int tx = (16384 + (FFABS(td) >> 1)) / td;
705  int dist_scale_factor = (tb * tx + 32) >> 8;
706  if (dist_scale_factor >= -64 && dist_scale_factor <= 128)
707  w = 64 - dist_scale_factor;
708  }
709  }
710  if (field < 0) {
711  sl->pwt.implicit_weight[ref0][ref1][0] =
712  sl->pwt.implicit_weight[ref0][ref1][1] = w;
713  } else {
714  sl->pwt.implicit_weight[ref0][ref1][field] = w;
715  }
716  }
717  }
718 }
719 
720 /**
721  * initialize scan tables
722  */
724 {
725  int i;
726  for (i = 0; i < 16; i++) {
727 #define TRANSPOSE(x) ((x) >> 2) | (((x) << 2) & 0xF)
729  h->field_scan[i] = TRANSPOSE(field_scan[i]);
730 #undef TRANSPOSE
731  }
732  for (i = 0; i < 64; i++) {
733 #define TRANSPOSE(x) ((x) >> 3) | (((x) & 7) << 3)
738 #undef TRANSPOSE
739  }
740  if (h->ps.sps->transform_bypass) { // FIXME same ugly
741  memcpy(h->zigzag_scan_q0 , ff_zigzag_scan , sizeof(h->zigzag_scan_q0 ));
742  memcpy(h->zigzag_scan8x8_q0 , ff_zigzag_direct , sizeof(h->zigzag_scan8x8_q0 ));
744  memcpy(h->field_scan_q0 , field_scan , sizeof(h->field_scan_q0 ));
745  memcpy(h->field_scan8x8_q0 , field_scan8x8 , sizeof(h->field_scan8x8_q0 ));
747  } else {
748  memcpy(h->zigzag_scan_q0 , h->zigzag_scan , sizeof(h->zigzag_scan_q0 ));
749  memcpy(h->zigzag_scan8x8_q0 , h->zigzag_scan8x8 , sizeof(h->zigzag_scan8x8_q0 ));
751  memcpy(h->field_scan_q0 , h->field_scan , sizeof(h->field_scan_q0 ));
752  memcpy(h->field_scan8x8_q0 , h->field_scan8x8 , sizeof(h->field_scan8x8_q0 ));
754  }
755 }
756 
757 static enum AVPixelFormat get_pixel_format(H264Context *h, int force_callback)
758 {
759 #define HWACCEL_MAX (CONFIG_H264_DXVA2_HWACCEL + \
760  (CONFIG_H264_D3D11VA_HWACCEL * 2) + \
761  CONFIG_H264_VAAPI_HWACCEL + \
762  (CONFIG_H264_VDA_HWACCEL * 2) + \
763  CONFIG_H264_VIDEOTOOLBOX_HWACCEL + \
764  CONFIG_H264_VDPAU_HWACCEL)
766  const enum AVPixelFormat *choices = pix_fmts;
767  int i;
768 
769  switch (h->ps.sps->bit_depth_luma) {
770  case 9:
771  if (CHROMA444(h)) {
772  if (h->avctx->colorspace == AVCOL_SPC_RGB) {
773  *fmt++ = AV_PIX_FMT_GBRP9;
774  } else
775  *fmt++ = AV_PIX_FMT_YUV444P9;
776  } else if (CHROMA422(h))
777  *fmt++ = AV_PIX_FMT_YUV422P9;
778  else
779  *fmt++ = AV_PIX_FMT_YUV420P9;
780  break;
781  case 10:
782  if (CHROMA444(h)) {
783  if (h->avctx->colorspace == AVCOL_SPC_RGB) {
784  *fmt++ = AV_PIX_FMT_GBRP10;
785  } else
786  *fmt++ = AV_PIX_FMT_YUV444P10;
787  } else if (CHROMA422(h))
788  *fmt++ = AV_PIX_FMT_YUV422P10;
789  else
790  *fmt++ = AV_PIX_FMT_YUV420P10;
791  break;
792  case 12:
793  if (CHROMA444(h)) {
794  if (h->avctx->colorspace == AVCOL_SPC_RGB) {
795  *fmt++ = AV_PIX_FMT_GBRP12;
796  } else
797  *fmt++ = AV_PIX_FMT_YUV444P12;
798  } else if (CHROMA422(h))
799  *fmt++ = AV_PIX_FMT_YUV422P12;
800  else
801  *fmt++ = AV_PIX_FMT_YUV420P12;
802  break;
803  case 14:
804  if (CHROMA444(h)) {
805  if (h->avctx->colorspace == AVCOL_SPC_RGB) {
806  *fmt++ = AV_PIX_FMT_GBRP14;
807  } else
808  *fmt++ = AV_PIX_FMT_YUV444P14;
809  } else if (CHROMA422(h))
810  *fmt++ = AV_PIX_FMT_YUV422P14;
811  else
812  *fmt++ = AV_PIX_FMT_YUV420P14;
813  break;
814  case 8:
815 #if CONFIG_H264_VDPAU_HWACCEL
816  *fmt++ = AV_PIX_FMT_VDPAU;
817 #endif
818  if (CHROMA444(h)) {
819  if (h->avctx->colorspace == AVCOL_SPC_RGB)
820  *fmt++ = AV_PIX_FMT_GBRP;
821  else if (h->avctx->color_range == AVCOL_RANGE_JPEG)
822  *fmt++ = AV_PIX_FMT_YUVJ444P;
823  else
824  *fmt++ = AV_PIX_FMT_YUV444P;
825  } else if (CHROMA422(h)) {
827  *fmt++ = AV_PIX_FMT_YUVJ422P;
828  else
829  *fmt++ = AV_PIX_FMT_YUV422P;
830  } else {
831 #if CONFIG_H264_DXVA2_HWACCEL
832  *fmt++ = AV_PIX_FMT_DXVA2_VLD;
833 #endif
834 #if CONFIG_H264_D3D11VA_HWACCEL
835  *fmt++ = AV_PIX_FMT_D3D11VA_VLD;
836  *fmt++ = AV_PIX_FMT_D3D11;
837 #endif
838 #if CONFIG_H264_VAAPI_HWACCEL
839  *fmt++ = AV_PIX_FMT_VAAPI;
840 #endif
841 #if CONFIG_H264_VDA_HWACCEL
842  *fmt++ = AV_PIX_FMT_VDA_VLD;
843  *fmt++ = AV_PIX_FMT_VDA;
844 #endif
845 #if CONFIG_H264_VIDEOTOOLBOX_HWACCEL
846  *fmt++ = AV_PIX_FMT_VIDEOTOOLBOX;
847 #endif
848  if (h->avctx->codec->pix_fmts)
849  choices = h->avctx->codec->pix_fmts;
850  else if (h->avctx->color_range == AVCOL_RANGE_JPEG)
851  *fmt++ = AV_PIX_FMT_YUVJ420P;
852  else
853  *fmt++ = AV_PIX_FMT_YUV420P;
854  }
855  break;
856  default:
858  "Unsupported bit depth %d\n", h->ps.sps->bit_depth_luma);
859  return AVERROR_INVALIDDATA;
860  }
861 
862  *fmt = AV_PIX_FMT_NONE;
863 
864  for (i=0; choices[i] != AV_PIX_FMT_NONE; i++)
865  if (choices[i] == h->avctx->pix_fmt && !force_callback)
866  return choices[i];
867  return ff_thread_get_format(h->avctx, choices);
868 }
869 
870 /* export coded and cropped frame dimensions to AVCodecContext */
872 {
873  const SPS *sps = (const SPS*)h->ps.sps;
874  int cr = sps->crop_right;
875  int cl = sps->crop_left;
876  int ct = sps->crop_top;
877  int cb = sps->crop_bottom;
878  int width = h->width - (cr + cl);
879  int height = h->height - (ct + cb);
880  av_assert0(sps->crop_right + sps->crop_left < (unsigned)h->width);
881  av_assert0(sps->crop_top + sps->crop_bottom < (unsigned)h->height);
882 
883  /* handle container cropping */
884  if (h->width_from_caller > 0 && h->height_from_caller > 0 &&
885  !sps->crop_top && !sps->crop_left &&
886  FFALIGN(h->width_from_caller, 16) == FFALIGN(width, 16) &&
887  FFALIGN(h->height_from_caller, 16) == FFALIGN(height, 16) &&
888  h->width_from_caller <= width &&
889  h->height_from_caller <= height) {
891  height = h->height_from_caller;
892  cl = 0;
893  ct = 0;
894  cr = h->width - width;
895  cb = h->height - height;
896  } else {
897  h->width_from_caller = 0;
898  h->height_from_caller = 0;
899  }
900 
901  h->avctx->coded_width = h->width;
902  h->avctx->coded_height = h->height;
903  h->avctx->width = width;
904  h->avctx->height = height;
905  h->crop_right = cr;
906  h->crop_left = cl;
907  h->crop_top = ct;
908  h->crop_bottom = cb;
909 
910  return 0;
911 }
912 
914 {
915  const SPS *sps = h->ps.sps;
916  int i, ret;
917 
918  ff_set_sar(h->avctx, sps->sar);
920  &h->chroma_x_shift, &h->chroma_y_shift);
921 
922  if (sps->timing_info_present_flag) {
923  int64_t den = sps->time_scale;
924  if (h->sei.unregistered.x264_build < 44U)
925  den *= 2;
927  sps->num_units_in_tick * h->avctx->ticks_per_frame, den, 1 << 30);
928  }
929 
931 
932  h->first_field = 0;
933  h->prev_interlaced_frame = 1;
934 
935  init_scan_tables(h);
936  ret = ff_h264_alloc_tables(h);
937  if (ret < 0) {
938  av_log(h->avctx, AV_LOG_ERROR, "Could not allocate memory\n");
939  goto fail;
940  }
941 
942 #if FF_API_CAP_VDPAU
943  if (h->avctx->codec &&
945  (sps->bit_depth_luma != 8 || sps->chroma_format_idc > 1)) {
947  "VDPAU decoding does not support video colorspace.\n");
948  ret = AVERROR_INVALIDDATA;
949  goto fail;
950  }
951 #endif
952 
953  if (sps->bit_depth_luma < 8 || sps->bit_depth_luma > 14 ||
954  sps->bit_depth_luma == 11 || sps->bit_depth_luma == 13
955  ) {
956  av_log(h->avctx, AV_LOG_ERROR, "Unsupported bit depth %d\n",
957  sps->bit_depth_luma);
958  ret = AVERROR_INVALIDDATA;
959  goto fail;
960  }
961 
962  h->cur_bit_depth_luma =
965  h->pixel_shift = sps->bit_depth_luma > 8;
967  h->bit_depth_luma = sps->bit_depth_luma;
968 
970  sps->chroma_format_idc);
974  sps->chroma_format_idc);
976 
977  if (!HAVE_THREADS || !(h->avctx->active_thread_type & FF_THREAD_SLICE)) {
978  ret = ff_h264_slice_context_init(h, &h->slice_ctx[0]);
979  if (ret < 0) {
980  av_log(h->avctx, AV_LOG_ERROR, "context_init() failed.\n");
981  goto fail;
982  }
983  } else {
984  for (i = 0; i < h->nb_slice_ctx; i++) {
985  H264SliceContext *sl = &h->slice_ctx[i];
986 
987  sl->h264 = h;
988  sl->intra4x4_pred_mode = h->intra4x4_pred_mode + i * 8 * 2 * h->mb_stride;
989  sl->mvd_table[0] = h->mvd_table[0] + i * 8 * 2 * h->mb_stride;
990  sl->mvd_table[1] = h->mvd_table[1] + i * 8 * 2 * h->mb_stride;
991 
992  if ((ret = ff_h264_slice_context_init(h, sl)) < 0) {
993  av_log(h->avctx, AV_LOG_ERROR, "context_init() failed.\n");
994  goto fail;
995  }
996  }
997  }
998 
999  h->context_initialized = 1;
1000 
1001  return 0;
1002 fail:
1004  h->context_initialized = 0;
1005  return ret;
1006 }
1007 
1009 {
1010  switch (a) {
1014  default:
1015  return a;
1016  }
1017 }
1018 
1019 static int h264_init_ps(H264Context *h, const H264SliceContext *sl, int first_slice)
1020 {
1021  const SPS *sps;
1022  int needs_reinit = 0, must_reinit, ret;
1023 
1024  if (first_slice) {
1025  av_buffer_unref(&h->ps.pps_ref);
1026  h->ps.pps = NULL;
1027  h->ps.pps_ref = av_buffer_ref(h->ps.pps_list[sl->pps_id]);
1028  if (!h->ps.pps_ref)
1029  return AVERROR(ENOMEM);
1030  h->ps.pps = (const PPS*)h->ps.pps_ref->data;
1031  }
1032 
1033  if (h->ps.sps != (const SPS*)h->ps.sps_list[h->ps.pps->sps_id]->data) {
1034  av_buffer_unref(&h->ps.sps_ref);
1035  h->ps.sps = NULL;
1036  h->ps.sps_ref = av_buffer_ref(h->ps.sps_list[h->ps.pps->sps_id]);
1037  if (!h->ps.sps_ref)
1038  return AVERROR(ENOMEM);
1039  h->ps.sps = (const SPS*)h->ps.sps_ref->data;
1040 
1041  if (h->mb_width != h->ps.sps->mb_width ||
1042  h->mb_height != h->ps.sps->mb_height ||
1045  )
1046  needs_reinit = 1;
1047 
1048  if (h->bit_depth_luma != h->ps.sps->bit_depth_luma ||
1050  needs_reinit = 1;
1051  }
1052  sps = h->ps.sps;
1053 
1054  must_reinit = (h->context_initialized &&
1055  ( 16*sps->mb_width != h->avctx->coded_width
1056  || 16*sps->mb_height != h->avctx->coded_height
1057  || h->cur_bit_depth_luma != sps->bit_depth_luma
1059  || h->mb_width != sps->mb_width
1060  || h->mb_height != sps->mb_height
1061  ));
1062  if (h->avctx->pix_fmt == AV_PIX_FMT_NONE
1064  must_reinit = 1;
1065 
1066  if (first_slice && av_cmp_q(sps->sar, h->avctx->sample_aspect_ratio))
1067  must_reinit = 1;
1068 
1069  if (!h->setup_finished) {
1070  h->avctx->profile = ff_h264_get_profile(sps);
1071  h->avctx->level = sps->level_idc;
1072  h->avctx->refs = sps->ref_frame_count;
1073 
1074  h->mb_width = sps->mb_width;
1075  h->mb_height = sps->mb_height;
1076  h->mb_num = h->mb_width * h->mb_height;
1077  h->mb_stride = h->mb_width + 1;
1078 
1079  h->b_stride = h->mb_width * 4;
1080 
1081  h->chroma_y_shift = sps->chroma_format_idc <= 1; // 400 uses yuv420p
1082 
1083  h->width = 16 * h->mb_width;
1084  h->height = 16 * h->mb_height;
1085 
1086  ret = init_dimensions(h);
1087  if (ret < 0)
1088  return ret;
1089 
1090  if (sps->video_signal_type_present_flag) {
1091  h->avctx->color_range = sps->full_range > 0 ? AVCOL_RANGE_JPEG
1092  : AVCOL_RANGE_MPEG;
1094  if (h->avctx->colorspace != sps->colorspace)
1095  needs_reinit = 1;
1097  h->avctx->color_trc = sps->color_trc;
1098  h->avctx->colorspace = sps->colorspace;
1099  }
1100  }
1101  }
1102 
1103  if (!h->context_initialized || must_reinit || needs_reinit) {
1104  int flush_changes = h->context_initialized;
1105  h->context_initialized = 0;
1106  if (sl != h->slice_ctx) {
1108  "changing width %d -> %d / height %d -> %d on "
1109  "slice %d\n",
1110  h->width, h->avctx->coded_width,
1111  h->height, h->avctx->coded_height,
1112  h->current_slice + 1);
1113  return AVERROR_INVALIDDATA;
1114  }
1115 
1116  av_assert1(first_slice);
1117 
1118  if (flush_changes)
1120 
1121  if ((ret = get_pixel_format(h, 1)) < 0)
1122  return ret;
1123  h->avctx->pix_fmt = ret;
1124 
1125  av_log(h->avctx, AV_LOG_VERBOSE, "Reinit context to %dx%d, "
1126  "pix_fmt: %s\n", h->width, h->height, av_get_pix_fmt_name(h->avctx->pix_fmt));
1127 
1128  if ((ret = h264_slice_header_init(h)) < 0) {
1130  "h264_slice_header_init() failed\n");
1131  return ret;
1132  }
1133  }
1134 
1135  return 0;
1136 }
1137 
1139 {
1140  const SPS *sps = h->ps.sps;
1141  H264Picture *cur = h->cur_pic_ptr;
1142 
1143  cur->f->interlaced_frame = 0;
1144  cur->f->repeat_pict = 0;
1145 
1146  /* Signal interlacing information externally. */
1147  /* Prioritize picture timing SEI information over used
1148  * decoding process if it exists. */
1149 
1152  switch (pt->pic_struct) {
1154  break;
1157  cur->f->interlaced_frame = 1;
1158  break;
1161  if (FIELD_OR_MBAFF_PICTURE(h))
1162  cur->f->interlaced_frame = 1;
1163  else
1164  // try to flag soft telecine progressive
1166  break;
1169  /* Signal the possibility of telecined film externally
1170  * (pic_struct 5,6). From these hints, let the applications
1171  * decide if they apply deinterlacing. */
1172  cur->f->repeat_pict = 1;
1173  break;
1175  cur->f->repeat_pict = 2;
1176  break;
1178  cur->f->repeat_pict = 4;
1179  break;
1180  }
1181 
1182  if ((pt->ct_type & 3) &&
1184  cur->f->interlaced_frame = (pt->ct_type & (1 << 1)) != 0;
1185  } else {
1186  /* Derive interlacing flag from used decoding process. */
1188  }
1190 
1191  if (cur->field_poc[0] != cur->field_poc[1]) {
1192  /* Derive top_field_first from field pocs. */
1193  cur->f->top_field_first = cur->field_poc[0] < cur->field_poc[1];
1194  } else {
1196  /* Use picture timing SEI information. Even if it is a
1197  * information of a past frame, better than nothing. */
1200  cur->f->top_field_first = 1;
1201  else
1202  cur->f->top_field_first = 0;
1203  } else if (cur->f->interlaced_frame) {
1204  /* Default to top field first when pic_struct_present_flag
1205  * is not set but interlaced frame detected */
1206  cur->f->top_field_first = 1;
1207  } else {
1208  /* Most likely progressive */
1209  cur->f->top_field_first = 0;
1210  }
1211  }
1212 
1213  if (h->sei.frame_packing.present &&
1218  AVStereo3D *stereo = av_stereo3d_create_side_data(cur->f);
1219  if (stereo) {
1220  switch (fp->frame_packing_arrangement_type) {
1221  case 0:
1222  stereo->type = AV_STEREO3D_CHECKERBOARD;
1223  break;
1224  case 1:
1225  stereo->type = AV_STEREO3D_COLUMNS;
1226  break;
1227  case 2:
1228  stereo->type = AV_STEREO3D_LINES;
1229  break;
1230  case 3:
1231  if (fp->quincunx_sampling_flag)
1233  else
1234  stereo->type = AV_STEREO3D_SIDEBYSIDE;
1235  break;
1236  case 4:
1237  stereo->type = AV_STEREO3D_TOPBOTTOM;
1238  break;
1239  case 5:
1240  stereo->type = AV_STEREO3D_FRAMESEQUENCE;
1241  break;
1242  case 6:
1243  stereo->type = AV_STEREO3D_2D;
1244  break;
1245  }
1246 
1247  if (fp->content_interpretation_type == 2)
1248  stereo->flags = AV_STEREO3D_FLAG_INVERT;
1249  }
1250  }
1251 
1252  if (h->sei.display_orientation.present &&
1257  double angle = o->anticlockwise_rotation * 360 / (double) (1 << 16);
1258  AVFrameSideData *rotation = av_frame_new_side_data(cur->f,
1260  sizeof(int32_t) * 9);
1261  if (rotation) {
1262  av_display_rotation_set((int32_t *)rotation->data, angle);
1263  av_display_matrix_flip((int32_t *)rotation->data,
1264  o->hflip, o->vflip);
1265  }
1266  }
1267 
1268  if (h->sei.afd.present) {
1270  sizeof(uint8_t));
1271 
1272  if (sd) {
1274  h->sei.afd.present = 0;
1275  }
1276  }
1277 
1278  if (h->sei.a53_caption.a53_caption) {
1279  H264SEIA53Caption *a53 = &h->sei.a53_caption;
1282  a53->a53_caption_size);
1283  if (sd)
1284  memcpy(sd->data, a53->a53_caption, a53->a53_caption_size);
1285  av_freep(&a53->a53_caption);
1286  a53->a53_caption_size = 0;
1288  }
1289 
1290  if (h->sei.alternative_transfer.present &&
1294  }
1295 
1296  return 0;
1297 }
1298 
1300 {
1301  const SPS *sps = h->ps.sps;
1302  H264Picture *out = h->cur_pic_ptr;
1303  H264Picture *cur = h->cur_pic_ptr;
1304  int i, pics, out_of_order, out_idx;
1305 
1306  cur->mmco_reset = h->mmco_reset;
1307  h->mmco_reset = 0;
1308 
1309  if (sps->bitstream_restriction_flag ||
1312  }
1313 
1314  for (i = 0; 1; i++) {
1315  if(i == MAX_DELAYED_PIC_COUNT || cur->poc < h->last_pocs[i]){
1316  if(i)
1317  h->last_pocs[i-1] = cur->poc;
1318  break;
1319  } else if(i) {
1320  h->last_pocs[i-1]= h->last_pocs[i];
1321  }
1322  }
1323  out_of_order = MAX_DELAYED_PIC_COUNT - i;
1324  if( cur->f->pict_type == AV_PICTURE_TYPE_B
1326  out_of_order = FFMAX(out_of_order, 1);
1327  if (out_of_order == MAX_DELAYED_PIC_COUNT) {
1328  av_log(h->avctx, AV_LOG_VERBOSE, "Invalid POC %d<%d\n", cur->poc, h->last_pocs[0]);
1329  for (i = 1; i < MAX_DELAYED_PIC_COUNT; i++)
1330  h->last_pocs[i] = INT_MIN;
1331  h->last_pocs[0] = cur->poc;
1332  cur->mmco_reset = 1;
1333  } else if(h->avctx->has_b_frames < out_of_order && !sps->bitstream_restriction_flag){
1334  int loglevel = h->avctx->frame_number > 1 ? AV_LOG_WARNING : AV_LOG_VERBOSE;
1335  av_log(h->avctx, loglevel, "Increasing reorder buffer to %d\n", out_of_order);
1336  h->avctx->has_b_frames = out_of_order;
1337  }
1338 
1339  pics = 0;
1340  while (h->delayed_pic[pics])
1341  pics++;
1342 
1344 
1345  h->delayed_pic[pics++] = cur;
1346  if (cur->reference == 0)
1347  cur->reference = DELAYED_PIC_REF;
1348 
1349  out = h->delayed_pic[0];
1350  out_idx = 0;
1351  for (i = 1; h->delayed_pic[i] &&
1352  !h->delayed_pic[i]->f->key_frame &&
1353  !h->delayed_pic[i]->mmco_reset;
1354  i++)
1355  if (h->delayed_pic[i]->poc < out->poc) {
1356  out = h->delayed_pic[i];
1357  out_idx = i;
1358  }
1359  if (h->avctx->has_b_frames == 0 &&
1360  (h->delayed_pic[0]->f->key_frame || h->delayed_pic[0]->mmco_reset))
1361  h->next_outputed_poc = INT_MIN;
1362  out_of_order = out->poc < h->next_outputed_poc;
1363 
1364  if (out_of_order || pics > h->avctx->has_b_frames) {
1365  out->reference &= ~DELAYED_PIC_REF;
1366  for (i = out_idx; h->delayed_pic[i]; i++)
1367  h->delayed_pic[i] = h->delayed_pic[i + 1];
1368  }
1369  if (!out_of_order && pics > h->avctx->has_b_frames) {
1370  h->next_output_pic = out;
1371  if (out_idx == 0 && h->delayed_pic[0] && (h->delayed_pic[0]->f->key_frame || h->delayed_pic[0]->mmco_reset)) {
1372  h->next_outputed_poc = INT_MIN;
1373  } else
1374  h->next_outputed_poc = out->poc;
1375 
1376  if (out->recovered) {
1377  // We have reached an recovery point and all frames after it in
1378  // display order are "recovered".
1380  }
1382 
1383  if (!out->recovered) {
1384  if (!(h->avctx->flags & AV_CODEC_FLAG_OUTPUT_CORRUPT) &&
1386  h->next_output_pic = NULL;
1387  } else {
1388  out->f->flags |= AV_FRAME_FLAG_CORRUPT;
1389  }
1390  }
1391  } else {
1392  av_log(h->avctx, AV_LOG_DEBUG, "no picture %s\n", out_of_order ? "ooo" : "");
1393  }
1394 
1395  return 0;
1396 }
1397 
1398 /* This function is called right after decoding the slice header for a first
1399  * slice in a field (or a frame). It decides whether we are decoding a new frame
1400  * or a second field in a pair and does the necessary setup.
1401  */
1403  const H2645NAL *nal, int first_slice)
1404 {
1405  int i;
1406  const SPS *sps;
1407 
1408  int last_pic_structure, last_pic_droppable, ret;
1409 
1410  ret = h264_init_ps(h, sl, first_slice);
1411  if (ret < 0)
1412  return ret;
1413 
1414  sps = h->ps.sps;
1415 
1416  last_pic_droppable = h->droppable;
1417  last_pic_structure = h->picture_structure;
1418  h->droppable = (nal->ref_idc == 0);
1420 
1421  h->poc.frame_num = sl->frame_num;
1422  h->poc.poc_lsb = sl->poc_lsb;
1424  h->poc.delta_poc[0] = sl->delta_poc[0];
1425  h->poc.delta_poc[1] = sl->delta_poc[1];
1426 
1427  /* Shorten frame num gaps so we don't have to allocate reference
1428  * frames just to throw them away */
1429  if (h->poc.frame_num != h->poc.prev_frame_num) {
1430  int unwrap_prev_frame_num = h->poc.prev_frame_num;
1431  int max_frame_num = 1 << sps->log2_max_frame_num;
1432 
1433  if (unwrap_prev_frame_num > h->poc.frame_num)
1434  unwrap_prev_frame_num -= max_frame_num;
1435 
1436  if ((h->poc.frame_num - unwrap_prev_frame_num) > sps->ref_frame_count) {
1437  unwrap_prev_frame_num = (h->poc.frame_num - sps->ref_frame_count) - 1;
1438  if (unwrap_prev_frame_num < 0)
1439  unwrap_prev_frame_num += max_frame_num;
1440 
1441  h->poc.prev_frame_num = unwrap_prev_frame_num;
1442  }
1443  }
1444 
1445  /* See if we have a decoded first field looking for a pair...
1446  * Here, we're using that to see if we should mark previously
1447  * decode frames as "finished".
1448  * We have to do that before the "dummy" in-between frame allocation,
1449  * since that can modify h->cur_pic_ptr. */
1450  if (h->first_field) {
1451  int last_field = last_pic_structure == PICT_BOTTOM_FIELD;
1452  av_assert0(h->cur_pic_ptr);
1453  av_assert0(h->cur_pic_ptr->f->buf[0]);
1454  assert(h->cur_pic_ptr->reference != DELAYED_PIC_REF);
1455 
1456  /* Mark old field/frame as completed */
1457  if (h->cur_pic_ptr->tf.owner[last_field] == h->avctx) {
1458  ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX, last_field);
1459  }
1460 
1461  /* figure out if we have a complementary field pair */
1462  if (!FIELD_PICTURE(h) || h->picture_structure == last_pic_structure) {
1463  /* Previous field is unmatched. Don't display it, but let it
1464  * remain for reference if marked as such. */
1465  if (last_pic_structure != PICT_FRAME) {
1467  last_pic_structure == PICT_TOP_FIELD);
1468  }
1469  } else {
1470  if (h->cur_pic_ptr->frame_num != h->poc.frame_num) {
1471  /* This and previous field were reference, but had
1472  * different frame_nums. Consider this field first in
1473  * pair. Throw away previous field except for reference
1474  * purposes. */
1475  if (last_pic_structure != PICT_FRAME) {
1477  last_pic_structure == PICT_TOP_FIELD);
1478  }
1479  } else {
1480  /* Second field in complementary pair */
1481  if (!((last_pic_structure == PICT_TOP_FIELD &&
1483  (last_pic_structure == PICT_BOTTOM_FIELD &&
1486  "Invalid field mode combination %d/%d\n",
1487  last_pic_structure, h->picture_structure);
1488  h->picture_structure = last_pic_structure;
1489  h->droppable = last_pic_droppable;
1490  return AVERROR_INVALIDDATA;
1491  } else if (last_pic_droppable != h->droppable) {
1493  "Found reference and non-reference fields in the same frame, which");
1494  h->picture_structure = last_pic_structure;
1495  h->droppable = last_pic_droppable;
1496  return AVERROR_PATCHWELCOME;
1497  }
1498  }
1499  }
1500  }
1501 
1502  while (h->poc.frame_num != h->poc.prev_frame_num && !h->first_field &&
1503  h->poc.frame_num != (h->poc.prev_frame_num + 1) % (1 << sps->log2_max_frame_num)) {
1504  H264Picture *prev = h->short_ref_count ? h->short_ref[0] : NULL;
1505  av_log(h->avctx, AV_LOG_DEBUG, "Frame num gap %d %d\n",
1506  h->poc.frame_num, h->poc.prev_frame_num);
1508  for(i=0; i<FF_ARRAY_ELEMS(h->last_pocs); i++)
1509  h->last_pocs[i] = INT_MIN;
1510  ret = h264_frame_start(h);
1511  if (ret < 0) {
1512  h->first_field = 0;
1513  return ret;
1514  }
1515 
1516  h->poc.prev_frame_num++;
1517  h->poc.prev_frame_num %= 1 << sps->log2_max_frame_num;
1520  ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX, 0);
1521  ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX, 1);
1522 
1523  h->explicit_ref_marking = 0;
1525  if (ret < 0 && (h->avctx->err_recognition & AV_EF_EXPLODE))
1526  return ret;
1527  /* Error concealment: If a ref is missing, copy the previous ref
1528  * in its place.
1529  * FIXME: Avoiding a memcpy would be nice, but ref handling makes
1530  * many assumptions about there being no actual duplicates.
1531  * FIXME: This does not copy padding for out-of-frame motion
1532  * vectors. Given we are concealing a lost frame, this probably
1533  * is not noticeable by comparison, but it should be fixed. */
1534  if (h->short_ref_count) {
1535  if (prev &&
1536  h->short_ref[0]->f->width == prev->f->width &&
1537  h->short_ref[0]->f->height == prev->f->height &&
1538  h->short_ref[0]->f->format == prev->f->format) {
1539  ff_thread_await_progress(&prev->tf, INT_MAX, 0);
1540  if (prev->field_picture)
1541  ff_thread_await_progress(&prev->tf, INT_MAX, 1);
1542  av_image_copy(h->short_ref[0]->f->data,
1543  h->short_ref[0]->f->linesize,
1544  (const uint8_t **)prev->f->data,
1545  prev->f->linesize,
1546  prev->f->format,
1547  prev->f->width,
1548  prev->f->height);
1549  h->short_ref[0]->poc = prev->poc + 2;
1550  }
1551  h->short_ref[0]->frame_num = h->poc.prev_frame_num;
1552  }
1553  }
1554 
1555  /* See if we have a decoded first field looking for a pair...
1556  * We're using that to see whether to continue decoding in that
1557  * frame, or to allocate a new one. */
1558  if (h->first_field) {
1559  av_assert0(h->cur_pic_ptr);
1560  av_assert0(h->cur_pic_ptr->f->buf[0]);
1561  assert(h->cur_pic_ptr->reference != DELAYED_PIC_REF);
1562 
1563  /* figure out if we have a complementary field pair */
1564  if (!FIELD_PICTURE(h) || h->picture_structure == last_pic_structure) {
1565  /* Previous field is unmatched. Don't display it, but let it
1566  * remain for reference if marked as such. */
1567  h->missing_fields ++;
1568  h->cur_pic_ptr = NULL;
1569  h->first_field = FIELD_PICTURE(h);
1570  } else {
1571  h->missing_fields = 0;
1572  if (h->cur_pic_ptr->frame_num != h->poc.frame_num) {
1575  /* This and the previous field had different frame_nums.
1576  * Consider this field first in pair. Throw away previous
1577  * one except for reference purposes. */
1578  h->first_field = 1;
1579  h->cur_pic_ptr = NULL;
1580  } else {
1581  /* Second field in complementary pair */
1582  h->first_field = 0;
1583  }
1584  }
1585  } else {
1586  /* Frame or first field in a potentially complementary pair */
1587  h->first_field = FIELD_PICTURE(h);
1588  }
1589 
1590  if (!FIELD_PICTURE(h) || h->first_field) {
1591  if (h264_frame_start(h) < 0) {
1592  h->first_field = 0;
1593  return AVERROR_INVALIDDATA;
1594  }
1595  } else {
1596  int field = h->picture_structure == PICT_BOTTOM_FIELD;
1598  h->cur_pic_ptr->tf.owner[field] = h->avctx;
1599  }
1600  /* Some macroblocks can be accessed before they're available in case
1601  * of lost slices, MBAFF or threading. */
1602  if (FIELD_PICTURE(h)) {
1603  for(i = (h->picture_structure == PICT_BOTTOM_FIELD); i<h->mb_height; i++)
1604  memset(h->slice_table + i*h->mb_stride, -1, (h->mb_stride - (i+1==h->mb_height)) * sizeof(*h->slice_table));
1605  } else {
1606  memset(h->slice_table, -1,
1607  (h->mb_height * h->mb_stride - 1) * sizeof(*h->slice_table));
1608  }
1609 
1611  h->ps.sps, &h->poc, h->picture_structure, nal->ref_idc);
1612 
1613  memcpy(h->mmco, sl->mmco, sl->nb_mmco * sizeof(*h->mmco));
1614  h->nb_mmco = sl->nb_mmco;
1616 
1617  h->picture_idr = nal->type == H264_NAL_IDR_SLICE;
1618 
1619  if (h->sei.recovery_point.recovery_frame_cnt >= 0) {
1620  const int sei_recovery_frame_cnt = h->sei.recovery_point.recovery_frame_cnt;
1621 
1622  if (h->poc.frame_num != sei_recovery_frame_cnt || sl->slice_type_nos != AV_PICTURE_TYPE_I)
1623  h->valid_recovery_point = 1;
1624 
1625  if ( h->recovery_frame < 0
1626  || av_mod_uintp2(h->recovery_frame - h->poc.frame_num, h->ps.sps->log2_max_frame_num) > sei_recovery_frame_cnt) {
1627  h->recovery_frame = av_mod_uintp2(h->poc.frame_num + sei_recovery_frame_cnt, h->ps.sps->log2_max_frame_num);
1628 
1629  if (!h->valid_recovery_point)
1630  h->recovery_frame = h->poc.frame_num;
1631  }
1632  }
1633 
1634  h->cur_pic_ptr->f->key_frame |= (nal->type == H264_NAL_IDR_SLICE);
1635 
1636  if (nal->type == H264_NAL_IDR_SLICE ||
1637  (h->recovery_frame == h->poc.frame_num && nal->ref_idc)) {
1638  h->recovery_frame = -1;
1639  h->cur_pic_ptr->recovered = 1;
1640  }
1641  // If we have an IDR, all frames after it in decoded order are
1642  // "recovered".
1643  if (nal->type == H264_NAL_IDR_SLICE)
1645 #if 1
1647 #else
1649 #endif
1650 
1651  /* Set the frame properties/side data. Only done for the second field in
1652  * field coded frames, since some SEI information is present for each field
1653  * and is merged by the SEI parsing code. */
1654  if (!FIELD_PICTURE(h) || !h->first_field || h->missing_fields > 1) {
1655  ret = h264_export_frame_props(h);
1656  if (ret < 0)
1657  return ret;
1658 
1659  ret = h264_select_output_frame(h);
1660  if (ret < 0)
1661  return ret;
1662  }
1663 
1664  return 0;
1665 }
1666 
1668  const H2645NAL *nal)
1669 {
1670  const SPS *sps;
1671  const PPS *pps;
1672  int ret;
1673  unsigned int slice_type, tmp, i;
1674  int field_pic_flag, bottom_field_flag;
1675  int first_slice = sl == h->slice_ctx && !h->current_slice;
1676  int picture_structure;
1677 
1678  if (first_slice)
1680 
1681  sl->first_mb_addr = get_ue_golomb_long(&sl->gb);
1682 
1683  slice_type = get_ue_golomb_31(&sl->gb);
1684  if (slice_type > 9) {
1686  "slice type %d too large at %d\n",
1687  slice_type, sl->first_mb_addr);
1688  return AVERROR_INVALIDDATA;
1689  }
1690  if (slice_type > 4) {
1691  slice_type -= 5;
1692  sl->slice_type_fixed = 1;
1693  } else
1694  sl->slice_type_fixed = 0;
1695 
1696  slice_type = ff_h264_golomb_to_pict_type[slice_type];
1697  sl->slice_type = slice_type;
1698  sl->slice_type_nos = slice_type & 3;
1699 
1700  if (nal->type == H264_NAL_IDR_SLICE &&
1702  av_log(h->avctx, AV_LOG_ERROR, "A non-intra slice in an IDR NAL unit.\n");
1703  return AVERROR_INVALIDDATA;
1704  }
1705 
1706  sl->pps_id = get_ue_golomb(&sl->gb);
1707  if (sl->pps_id >= MAX_PPS_COUNT) {
1708  av_log(h->avctx, AV_LOG_ERROR, "pps_id %u out of range\n", sl->pps_id);
1709  return AVERROR_INVALIDDATA;
1710  }
1711  if (!h->ps.pps_list[sl->pps_id]) {
1713  "non-existing PPS %u referenced\n",
1714  sl->pps_id);
1715  return AVERROR_INVALIDDATA;
1716  }
1717  pps = (const PPS*)h->ps.pps_list[sl->pps_id]->data;
1718 
1719  if (!h->ps.sps_list[pps->sps_id]) {
1721  "non-existing SPS %u referenced\n", pps->sps_id);
1722  return AVERROR_INVALIDDATA;
1723  }
1724  sps = (const SPS*)h->ps.sps_list[pps->sps_id]->data;
1725 
1726  sl->frame_num = get_bits(&sl->gb, sps->log2_max_frame_num);
1727  if (!first_slice) {
1728  if (h->poc.frame_num != sl->frame_num) {
1729  av_log(h->avctx, AV_LOG_ERROR, "Frame num change from %d to %d\n",
1730  h->poc.frame_num, sl->frame_num);
1731  return AVERROR_INVALIDDATA;
1732  }
1733  }
1734 
1735  sl->mb_mbaff = 0;
1736 
1737  if (sps->frame_mbs_only_flag) {
1738  picture_structure = PICT_FRAME;
1739  } else {
1740  if (!sps->direct_8x8_inference_flag && slice_type == AV_PICTURE_TYPE_B) {
1741  av_log(h->avctx, AV_LOG_ERROR, "This stream was generated by a broken encoder, invalid 8x8 inference\n");
1742  return -1;
1743  }
1744  field_pic_flag = get_bits1(&sl->gb);
1745  if (field_pic_flag) {
1746  bottom_field_flag = get_bits1(&sl->gb);
1747  picture_structure = PICT_TOP_FIELD + bottom_field_flag;
1748  } else {
1749  picture_structure = PICT_FRAME;
1750  }
1751  }
1752  sl->picture_structure = picture_structure;
1753  sl->mb_field_decoding_flag = picture_structure != PICT_FRAME;
1754 
1755  if (picture_structure == PICT_FRAME) {
1756  sl->curr_pic_num = sl->frame_num;
1757  sl->max_pic_num = 1 << sps->log2_max_frame_num;
1758  } else {
1759  sl->curr_pic_num = 2 * sl->frame_num + 1;
1760  sl->max_pic_num = 1 << (sps->log2_max_frame_num + 1);
1761  }
1762 
1763  if (nal->type == H264_NAL_IDR_SLICE)
1764  get_ue_golomb_long(&sl->gb); /* idr_pic_id */
1765 
1766  if (sps->poc_type == 0) {
1767  sl->poc_lsb = get_bits(&sl->gb, sps->log2_max_poc_lsb);
1768 
1769  if (pps->pic_order_present == 1 && picture_structure == PICT_FRAME)
1770  sl->delta_poc_bottom = get_se_golomb(&sl->gb);
1771  }
1772 
1773  if (sps->poc_type == 1 && !sps->delta_pic_order_always_zero_flag) {
1774  sl->delta_poc[0] = get_se_golomb(&sl->gb);
1775 
1776  if (pps->pic_order_present == 1 && picture_structure == PICT_FRAME)
1777  sl->delta_poc[1] = get_se_golomb(&sl->gb);
1778  }
1779 
1780  sl->redundant_pic_count = 0;
1781  if (pps->redundant_pic_cnt_present)
1782  sl->redundant_pic_count = get_ue_golomb(&sl->gb);
1783 
1784  if (sl->slice_type_nos == AV_PICTURE_TYPE_B)
1785  sl->direct_spatial_mv_pred = get_bits1(&sl->gb);
1786 
1788  &sl->gb, pps, sl->slice_type_nos,
1789  picture_structure, h->avctx);
1790  if (ret < 0)
1791  return ret;
1792 
1793  if (sl->slice_type_nos != AV_PICTURE_TYPE_I) {
1795  if (ret < 0) {
1796  sl->ref_count[1] = sl->ref_count[0] = 0;
1797  return ret;
1798  }
1799  }
1800 
1801  sl->pwt.use_weight = 0;
1802  for (i = 0; i < 2; i++) {
1803  sl->pwt.luma_weight_flag[i] = 0;
1804  sl->pwt.chroma_weight_flag[i] = 0;
1805  }
1806  if ((pps->weighted_pred && sl->slice_type_nos == AV_PICTURE_TYPE_P) ||
1807  (pps->weighted_bipred_idc == 1 &&
1809  ret = ff_h264_pred_weight_table(&sl->gb, sps, sl->ref_count,
1810  sl->slice_type_nos, &sl->pwt,
1811  picture_structure, h->avctx);
1812  if (ret < 0)
1813  return ret;
1814  }
1815 
1816  sl->explicit_ref_marking = 0;
1817  if (nal->ref_idc) {
1818  ret = ff_h264_decode_ref_pic_marking(sl, &sl->gb, nal, h->avctx);
1819  if (ret < 0 && (h->avctx->err_recognition & AV_EF_EXPLODE))
1820  return AVERROR_INVALIDDATA;
1821  }
1822 
1823  if (sl->slice_type_nos != AV_PICTURE_TYPE_I && pps->cabac) {
1824  tmp = get_ue_golomb_31(&sl->gb);
1825  if (tmp > 2) {
1826  av_log(h->avctx, AV_LOG_ERROR, "cabac_init_idc %u overflow\n", tmp);
1827  return AVERROR_INVALIDDATA;
1828  }
1829  sl->cabac_init_idc = tmp;
1830  }
1831 
1832  sl->last_qscale_diff = 0;
1833  tmp = pps->init_qp + (unsigned)get_se_golomb(&sl->gb);
1834  if (tmp > 51 + 6 * (sps->bit_depth_luma - 8)) {
1835  av_log(h->avctx, AV_LOG_ERROR, "QP %u out of range\n", tmp);
1836  return AVERROR_INVALIDDATA;
1837  }
1838  sl->qscale = tmp;
1839  sl->chroma_qp[0] = get_chroma_qp(pps, 0, sl->qscale);
1840  sl->chroma_qp[1] = get_chroma_qp(pps, 1, sl->qscale);
1841  // FIXME qscale / qp ... stuff
1842  if (sl->slice_type == AV_PICTURE_TYPE_SP)
1843  get_bits1(&sl->gb); /* sp_for_switch_flag */
1844  if (sl->slice_type == AV_PICTURE_TYPE_SP ||
1846  get_se_golomb(&sl->gb); /* slice_qs_delta */
1847 
1848  sl->deblocking_filter = 1;
1849  sl->slice_alpha_c0_offset = 0;
1850  sl->slice_beta_offset = 0;
1852  tmp = get_ue_golomb_31(&sl->gb);
1853  if (tmp > 2) {
1855  "deblocking_filter_idc %u out of range\n", tmp);
1856  return AVERROR_INVALIDDATA;
1857  }
1858  sl->deblocking_filter = tmp;
1859  if (sl->deblocking_filter < 2)
1860  sl->deblocking_filter ^= 1; // 1<->0
1861 
1862  if (sl->deblocking_filter) {
1863  int slice_alpha_c0_offset_div2 = get_se_golomb(&sl->gb);
1864  int slice_beta_offset_div2 = get_se_golomb(&sl->gb);
1865  if (slice_alpha_c0_offset_div2 > 6 ||
1866  slice_alpha_c0_offset_div2 < -6 ||
1867  slice_beta_offset_div2 > 6 ||
1868  slice_beta_offset_div2 < -6) {
1870  "deblocking filter parameters %d %d out of range\n",
1871  slice_alpha_c0_offset_div2, slice_beta_offset_div2);
1872  return AVERROR_INVALIDDATA;
1873  }
1874  sl->slice_alpha_c0_offset = slice_alpha_c0_offset_div2 * 2;
1875  sl->slice_beta_offset = slice_beta_offset_div2 * 2;
1876  }
1877  }
1878 
1879  return 0;
1880 }
1881 
1882 /* do all the per-slice initialization needed before we can start decoding the
1883  * actual MBs */
1885  const H2645NAL *nal)
1886 {
1887  int i, j, ret = 0;
1888 
1889  if (h->picture_idr && nal->type != H264_NAL_IDR_SLICE) {
1890  av_log(h->avctx, AV_LOG_ERROR, "Invalid mix of IDR and non-IDR slices\n");
1891  return AVERROR_INVALIDDATA;
1892  }
1893 
1894  av_assert1(h->mb_num == h->mb_width * h->mb_height);
1895  if (sl->first_mb_addr << FIELD_OR_MBAFF_PICTURE(h) >= h->mb_num ||
1896  sl->first_mb_addr >= h->mb_num) {
1897  av_log(h->avctx, AV_LOG_ERROR, "first_mb_in_slice overflow\n");
1898  return AVERROR_INVALIDDATA;
1899  }
1900  sl->resync_mb_x = sl->mb_x = sl->first_mb_addr % h->mb_width;
1901  sl->resync_mb_y = sl->mb_y = (sl->first_mb_addr / h->mb_width) <<
1904  sl->resync_mb_y = sl->mb_y = sl->mb_y + 1;
1905  av_assert1(sl->mb_y < h->mb_height);
1906 
1907  ret = ff_h264_build_ref_list(h, sl);
1908  if (ret < 0)
1909  return ret;
1910 
1911  if (h->ps.pps->weighted_bipred_idc == 2 &&
1913  implicit_weight_table(h, sl, -1);
1914  if (FRAME_MBAFF(h)) {
1915  implicit_weight_table(h, sl, 0);
1916  implicit_weight_table(h, sl, 1);
1917  }
1918  }
1919 
1922  if (!h->setup_finished)
1924 
1925  if (h->avctx->skip_loop_filter >= AVDISCARD_ALL ||
1933  nal->ref_idc == 0))
1934  sl->deblocking_filter = 0;
1935 
1936  if (sl->deblocking_filter == 1 && h->nb_slice_ctx > 1) {
1937  if (h->avctx->flags2 & AV_CODEC_FLAG2_FAST) {
1938  /* Cheat slightly for speed:
1939  * Do not bother to deblock across slices. */
1940  sl->deblocking_filter = 2;
1941  } else {
1942  h->postpone_filter = 1;
1943  }
1944  }
1945  sl->qp_thresh = 15 -
1947  FFMAX3(0,
1948  h->ps.pps->chroma_qp_index_offset[0],
1949  h->ps.pps->chroma_qp_index_offset[1]) +
1950  6 * (h->ps.sps->bit_depth_luma - 8);
1951 
1952  sl->slice_num = ++h->current_slice;
1953 
1954  if (sl->slice_num)
1955  h->slice_row[(sl->slice_num-1)&(MAX_SLICES-1)]= sl->resync_mb_y;
1956  if ( h->slice_row[sl->slice_num&(MAX_SLICES-1)] + 3 >= sl->resync_mb_y
1957  && h->slice_row[sl->slice_num&(MAX_SLICES-1)] <= sl->resync_mb_y
1958  && sl->slice_num >= MAX_SLICES) {
1959  //in case of ASO this check needs to be updated depending on how we decide to assign slice numbers in this case
1960  av_log(h->avctx, AV_LOG_WARNING, "Possibly too many slices (%d >= %d), increase MAX_SLICES and recompile if there are artifacts\n", sl->slice_num, MAX_SLICES);
1961  }
1962 
1963  for (j = 0; j < 2; j++) {
1964  int id_list[16];
1965  int *ref2frm = h->ref2frm[sl->slice_num & (MAX_SLICES - 1)][j];
1966  for (i = 0; i < 16; i++) {
1967  id_list[i] = 60;
1968  if (j < sl->list_count && i < sl->ref_count[j] &&
1969  sl->ref_list[j][i].parent->f->buf[0]) {
1970  int k;
1971  AVBuffer *buf = sl->ref_list[j][i].parent->f->buf[0]->buffer;
1972  for (k = 0; k < h->short_ref_count; k++)
1973  if (h->short_ref[k]->f->buf[0]->buffer == buf) {
1974  id_list[i] = k;
1975  break;
1976  }
1977  for (k = 0; k < h->long_ref_count; k++)
1978  if (h->long_ref[k] && h->long_ref[k]->f->buf[0]->buffer == buf) {
1979  id_list[i] = h->short_ref_count + k;
1980  break;
1981  }
1982  }
1983  }
1984 
1985  ref2frm[0] =
1986  ref2frm[1] = -1;
1987  for (i = 0; i < 16; i++)
1988  ref2frm[i + 2] = 4 * id_list[i] + (sl->ref_list[j][i].reference & 3);
1989  ref2frm[18 + 0] =
1990  ref2frm[18 + 1] = -1;
1991  for (i = 16; i < 48; i++)
1992  ref2frm[i + 4] = 4 * id_list[(i - 16) >> 1] +
1993  (sl->ref_list[j][i].reference & 3);
1994  }
1995 
1996  if (h->avctx->debug & FF_DEBUG_PICT_INFO) {
1998  "slice:%d %s mb:%d %c%s%s frame:%d poc:%d/%d ref:%d/%d qp:%d loop:%d:%d:%d weight:%d%s %s\n",
1999  sl->slice_num,
2000  (h->picture_structure == PICT_FRAME ? "F" : h->picture_structure == PICT_TOP_FIELD ? "T" : "B"),
2001  sl->mb_y * h->mb_width + sl->mb_x,
2003  sl->slice_type_fixed ? " fix" : "",
2004  nal->type == H264_NAL_IDR_SLICE ? " IDR" : "",
2005  h->poc.frame_num,
2006  h->cur_pic_ptr->field_poc[0],
2007  h->cur_pic_ptr->field_poc[1],
2008  sl->ref_count[0], sl->ref_count[1],
2009  sl->qscale,
2010  sl->deblocking_filter,
2012  sl->pwt.use_weight,
2013  sl->pwt.use_weight == 1 && sl->pwt.use_weight_chroma ? "c" : "",
2014  sl->slice_type == AV_PICTURE_TYPE_B ? (sl->direct_spatial_mv_pred ? "SPAT" : "TEMP") : "");
2015  }
2016 
2017  return 0;
2018 }
2019 
2021 {
2023  int first_slice = sl == h->slice_ctx && !h->current_slice;
2024  int ret;
2025 
2026  sl->gb = nal->gb;
2027 
2028  ret = h264_slice_header_parse(h, sl, nal);
2029  if (ret < 0)
2030  return ret;
2031 
2032  // discard redundant pictures
2033  if (sl->redundant_pic_count > 0) {
2034  sl->ref_count[0] = sl->ref_count[1] = 0;
2035  return 0;
2036  }
2037 
2038  if (sl->first_mb_addr == 0 || !h->current_slice) {
2039  if (h->setup_finished) {
2040  av_log(h->avctx, AV_LOG_ERROR, "Too many fields\n");
2041  return AVERROR_INVALIDDATA;
2042  }
2043  }
2044 
2045  if (sl->first_mb_addr == 0) { // FIXME better field boundary detection
2046  if (h->current_slice) {
2047  // this slice starts a new field
2048  // first decode any pending queued slices
2049  if (h->nb_slice_ctx_queued) {
2050  H264SliceContext tmp_ctx;
2051 
2053  if (ret < 0 && (h->avctx->err_recognition & AV_EF_EXPLODE))
2054  return ret;
2055 
2056  memcpy(&tmp_ctx, h->slice_ctx, sizeof(tmp_ctx));
2057  memcpy(h->slice_ctx, sl, sizeof(tmp_ctx));
2058  memcpy(sl, &tmp_ctx, sizeof(tmp_ctx));
2059  sl = h->slice_ctx;
2060  }
2061 
2062  if (h->cur_pic_ptr && FIELD_PICTURE(h) && h->first_field) {
2063  ret = ff_h264_field_end(h, h->slice_ctx, 1);
2064  if (ret < 0)
2065  return ret;
2066  } else if (h->cur_pic_ptr && !FIELD_PICTURE(h) && !h->first_field && h->nal_unit_type == H264_NAL_IDR_SLICE) {
2067  av_log(h, AV_LOG_WARNING, "Broken frame packetizing\n");
2068  ret = ff_h264_field_end(h, h->slice_ctx, 1);
2069  ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX, 0);
2070  ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX, 1);
2071  h->cur_pic_ptr = NULL;
2072  if (ret < 0)
2073  return ret;
2074  } else
2075  return AVERROR_INVALIDDATA;
2076  }
2077 
2078  if (!h->first_field) {
2079  if (h->cur_pic_ptr && !h->droppable) {
2082  }
2083  h->cur_pic_ptr = NULL;
2084  }
2085  }
2086 
2087  if (!h->current_slice)
2088  av_assert0(sl == h->slice_ctx);
2089 
2090  if (h->current_slice == 0 && !h->first_field) {
2091  if (
2092  (h->avctx->skip_frame >= AVDISCARD_NONREF && !h->nal_ref_idc) ||
2096  h->avctx->skip_frame >= AVDISCARD_ALL) {
2097  return 0;
2098  }
2099  }
2100 
2101  if (!first_slice) {
2102  const PPS *pps = (const PPS*)h->ps.pps_list[sl->pps_id]->data;
2103 
2104  if (h->ps.pps->sps_id != pps->sps_id ||
2105  h->ps.pps->transform_8x8_mode != pps->transform_8x8_mode /*||
2106  (h->setup_finished && h->ps.pps != pps)*/) {
2107  av_log(h->avctx, AV_LOG_ERROR, "PPS changed between slices\n");
2108  return AVERROR_INVALIDDATA;
2109  }
2110  if (h->ps.sps != (const SPS*)h->ps.sps_list[h->ps.pps->sps_id]->data) {
2112  "SPS changed in the middle of the frame\n");
2113  return AVERROR_INVALIDDATA;
2114  }
2115  }
2116 
2117  if (h->current_slice == 0) {
2118  ret = h264_field_start(h, sl, nal, first_slice);
2119  if (ret < 0)
2120  return ret;
2121  } else {
2122  if (h->picture_structure != sl->picture_structure ||
2123  h->droppable != (nal->ref_idc == 0)) {
2125  "Changing field mode (%d -> %d) between slices is not allowed\n",
2127  return AVERROR_INVALIDDATA;
2128  } else if (!h->cur_pic_ptr) {
2130  "unset cur_pic_ptr on slice %d\n",
2131  h->current_slice + 1);
2132  return AVERROR_INVALIDDATA;
2133  }
2134  }
2135 
2136  ret = h264_slice_init(h, sl, nal);
2137  if (ret < 0)
2138  return ret;
2139 
2140  h->nb_slice_ctx_queued++;
2141 
2142  return 0;
2143 }
2144 
2146 {
2147  switch (sl->slice_type) {
2148  case AV_PICTURE_TYPE_P:
2149  return 0;
2150  case AV_PICTURE_TYPE_B:
2151  return 1;
2152  case AV_PICTURE_TYPE_I:
2153  return 2;
2154  case AV_PICTURE_TYPE_SP:
2155  return 3;
2156  case AV_PICTURE_TYPE_SI:
2157  return 4;
2158  default:
2159  return AVERROR_INVALIDDATA;
2160  }
2161 }
2162 
2164  H264SliceContext *sl,
2165  int mb_type, int top_xy,
2166  int left_xy[LEFT_MBS],
2167  int top_type,
2168  int left_type[LEFT_MBS],
2169  int mb_xy, int list)
2170 {
2171  int b_stride = h->b_stride;
2172  int16_t(*mv_dst)[2] = &sl->mv_cache[list][scan8[0]];
2173  int8_t *ref_cache = &sl->ref_cache[list][scan8[0]];
2174  if (IS_INTER(mb_type) || IS_DIRECT(mb_type)) {
2175  if (USES_LIST(top_type, list)) {
2176  const int b_xy = h->mb2b_xy[top_xy] + 3 * b_stride;
2177  const int b8_xy = 4 * top_xy + 2;
2178  const int *ref2frm = &h->ref2frm[h->slice_table[top_xy] & (MAX_SLICES - 1)][list][(MB_MBAFF(sl) ? 20 : 2)];
2179  AV_COPY128(mv_dst - 1 * 8, h->cur_pic.motion_val[list][b_xy + 0]);
2180  ref_cache[0 - 1 * 8] =
2181  ref_cache[1 - 1 * 8] = ref2frm[h->cur_pic.ref_index[list][b8_xy + 0]];
2182  ref_cache[2 - 1 * 8] =
2183  ref_cache[3 - 1 * 8] = ref2frm[h->cur_pic.ref_index[list][b8_xy + 1]];
2184  } else {
2185  AV_ZERO128(mv_dst - 1 * 8);
2186  AV_WN32A(&ref_cache[0 - 1 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u);
2187  }
2188 
2189  if (!IS_INTERLACED(mb_type ^ left_type[LTOP])) {
2190  if (USES_LIST(left_type[LTOP], list)) {
2191  const int b_xy = h->mb2b_xy[left_xy[LTOP]] + 3;
2192  const int b8_xy = 4 * left_xy[LTOP] + 1;
2193  const int *ref2frm = &h->ref2frm[h->slice_table[left_xy[LTOP]] & (MAX_SLICES - 1)][list][(MB_MBAFF(sl) ? 20 : 2)];
2194  AV_COPY32(mv_dst - 1 + 0, h->cur_pic.motion_val[list][b_xy + b_stride * 0]);
2195  AV_COPY32(mv_dst - 1 + 8, h->cur_pic.motion_val[list][b_xy + b_stride * 1]);
2196  AV_COPY32(mv_dst - 1 + 16, h->cur_pic.motion_val[list][b_xy + b_stride * 2]);
2197  AV_COPY32(mv_dst - 1 + 24, h->cur_pic.motion_val[list][b_xy + b_stride * 3]);
2198  ref_cache[-1 + 0] =
2199  ref_cache[-1 + 8] = ref2frm[h->cur_pic.ref_index[list][b8_xy + 2 * 0]];
2200  ref_cache[-1 + 16] =
2201  ref_cache[-1 + 24] = ref2frm[h->cur_pic.ref_index[list][b8_xy + 2 * 1]];
2202  } else {
2203  AV_ZERO32(mv_dst - 1 + 0);
2204  AV_ZERO32(mv_dst - 1 + 8);
2205  AV_ZERO32(mv_dst - 1 + 16);
2206  AV_ZERO32(mv_dst - 1 + 24);
2207  ref_cache[-1 + 0] =
2208  ref_cache[-1 + 8] =
2209  ref_cache[-1 + 16] =
2210  ref_cache[-1 + 24] = LIST_NOT_USED;
2211  }
2212  }
2213  }
2214 
2215  if (!USES_LIST(mb_type, list)) {
2216  fill_rectangle(mv_dst, 4, 4, 8, pack16to32(0, 0), 4);
2217  AV_WN32A(&ref_cache[0 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u);
2218  AV_WN32A(&ref_cache[1 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u);
2219  AV_WN32A(&ref_cache[2 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u);
2220  AV_WN32A(&ref_cache[3 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u);
2221  return;
2222  }
2223 
2224  {
2225  int8_t *ref = &h->cur_pic.ref_index[list][4 * mb_xy];
2226  const int *ref2frm = &h->ref2frm[sl->slice_num & (MAX_SLICES - 1)][list][(MB_MBAFF(sl) ? 20 : 2)];
2227  uint32_t ref01 = (pack16to32(ref2frm[ref[0]], ref2frm[ref[1]]) & 0x00FF00FF) * 0x0101;
2228  uint32_t ref23 = (pack16to32(ref2frm[ref[2]], ref2frm[ref[3]]) & 0x00FF00FF) * 0x0101;
2229  AV_WN32A(&ref_cache[0 * 8], ref01);
2230  AV_WN32A(&ref_cache[1 * 8], ref01);
2231  AV_WN32A(&ref_cache[2 * 8], ref23);
2232  AV_WN32A(&ref_cache[3 * 8], ref23);
2233  }
2234 
2235  {
2236  int16_t(*mv_src)[2] = &h->cur_pic.motion_val[list][4 * sl->mb_x + 4 * sl->mb_y * b_stride];
2237  AV_COPY128(mv_dst + 8 * 0, mv_src + 0 * b_stride);
2238  AV_COPY128(mv_dst + 8 * 1, mv_src + 1 * b_stride);
2239  AV_COPY128(mv_dst + 8 * 2, mv_src + 2 * b_stride);
2240  AV_COPY128(mv_dst + 8 * 3, mv_src + 3 * b_stride);
2241  }
2242 }
2243 
2244 /**
2245  * @return non zero if the loop filter can be skipped
2246  */
2247 static int fill_filter_caches(const H264Context *h, H264SliceContext *sl, int mb_type)
2248 {
2249  const int mb_xy = sl->mb_xy;
2250  int top_xy, left_xy[LEFT_MBS];
2251  int top_type, left_type[LEFT_MBS];
2252  uint8_t *nnz;
2253  uint8_t *nnz_cache;
2254 
2255  top_xy = mb_xy - (h->mb_stride << MB_FIELD(sl));
2256 
2257  left_xy[LBOT] = left_xy[LTOP] = mb_xy - 1;
2258  if (FRAME_MBAFF(h)) {
2259  const int left_mb_field_flag = IS_INTERLACED(h->cur_pic.mb_type[mb_xy - 1]);
2260  const int curr_mb_field_flag = IS_INTERLACED(mb_type);
2261  if (sl->mb_y & 1) {
2262  if (left_mb_field_flag != curr_mb_field_flag)
2263  left_xy[LTOP] -= h->mb_stride;
2264  } else {
2265  if (curr_mb_field_flag)
2266  top_xy += h->mb_stride &
2267  (((h->cur_pic.mb_type[top_xy] >> 7) & 1) - 1);
2268  if (left_mb_field_flag != curr_mb_field_flag)
2269  left_xy[LBOT] += h->mb_stride;
2270  }
2271  }
2272 
2273  sl->top_mb_xy = top_xy;
2274  sl->left_mb_xy[LTOP] = left_xy[LTOP];
2275  sl->left_mb_xy[LBOT] = left_xy[LBOT];
2276  {
2277  /* For sufficiently low qp, filtering wouldn't do anything.
2278  * This is a conservative estimate: could also check beta_offset
2279  * and more accurate chroma_qp. */
2280  int qp_thresh = sl->qp_thresh; // FIXME strictly we should store qp_thresh for each mb of a slice
2281  int qp = h->cur_pic.qscale_table[mb_xy];
2282  if (qp <= qp_thresh &&
2283  (left_xy[LTOP] < 0 ||
2284  ((qp + h->cur_pic.qscale_table[left_xy[LTOP]] + 1) >> 1) <= qp_thresh) &&
2285  (top_xy < 0 ||
2286  ((qp + h->cur_pic.qscale_table[top_xy] + 1) >> 1) <= qp_thresh)) {
2287  if (!FRAME_MBAFF(h))
2288  return 1;
2289  if ((left_xy[LTOP] < 0 ||
2290  ((qp + h->cur_pic.qscale_table[left_xy[LBOT]] + 1) >> 1) <= qp_thresh) &&
2291  (top_xy < h->mb_stride ||
2292  ((qp + h->cur_pic.qscale_table[top_xy - h->mb_stride] + 1) >> 1) <= qp_thresh))
2293  return 1;
2294  }
2295  }
2296 
2297  top_type = h->cur_pic.mb_type[top_xy];
2298  left_type[LTOP] = h->cur_pic.mb_type[left_xy[LTOP]];
2299  left_type[LBOT] = h->cur_pic.mb_type[left_xy[LBOT]];
2300  if (sl->deblocking_filter == 2) {
2301  if (h->slice_table[top_xy] != sl->slice_num)
2302  top_type = 0;
2303  if (h->slice_table[left_xy[LBOT]] != sl->slice_num)
2304  left_type[LTOP] = left_type[LBOT] = 0;
2305  } else {
2306  if (h->slice_table[top_xy] == 0xFFFF)
2307  top_type = 0;
2308  if (h->slice_table[left_xy[LBOT]] == 0xFFFF)
2309  left_type[LTOP] = left_type[LBOT] = 0;
2310  }
2311  sl->top_type = top_type;
2312  sl->left_type[LTOP] = left_type[LTOP];
2313  sl->left_type[LBOT] = left_type[LBOT];
2314 
2315  if (IS_INTRA(mb_type))
2316  return 0;
2317 
2318  fill_filter_caches_inter(h, sl, mb_type, top_xy, left_xy,
2319  top_type, left_type, mb_xy, 0);
2320  if (sl->list_count == 2)
2321  fill_filter_caches_inter(h, sl, mb_type, top_xy, left_xy,
2322  top_type, left_type, mb_xy, 1);
2323 
2324  nnz = h->non_zero_count[mb_xy];
2325  nnz_cache = sl->non_zero_count_cache;
2326  AV_COPY32(&nnz_cache[4 + 8 * 1], &nnz[0]);
2327  AV_COPY32(&nnz_cache[4 + 8 * 2], &nnz[4]);
2328  AV_COPY32(&nnz_cache[4 + 8 * 3], &nnz[8]);
2329  AV_COPY32(&nnz_cache[4 + 8 * 4], &nnz[12]);
2330  sl->cbp = h->cbp_table[mb_xy];
2331 
2332  if (top_type) {
2333  nnz = h->non_zero_count[top_xy];
2334  AV_COPY32(&nnz_cache[4 + 8 * 0], &nnz[3 * 4]);
2335  }
2336 
2337  if (left_type[LTOP]) {
2338  nnz = h->non_zero_count[left_xy[LTOP]];
2339  nnz_cache[3 + 8 * 1] = nnz[3 + 0 * 4];
2340  nnz_cache[3 + 8 * 2] = nnz[3 + 1 * 4];
2341  nnz_cache[3 + 8 * 3] = nnz[3 + 2 * 4];
2342  nnz_cache[3 + 8 * 4] = nnz[3 + 3 * 4];
2343  }
2344 
2345  /* CAVLC 8x8dct requires NNZ values for residual decoding that differ
2346  * from what the loop filter needs */
2347  if (!CABAC(h) && h->ps.pps->transform_8x8_mode) {
2348  if (IS_8x8DCT(top_type)) {
2349  nnz_cache[4 + 8 * 0] =
2350  nnz_cache[5 + 8 * 0] = (h->cbp_table[top_xy] & 0x4000) >> 12;
2351  nnz_cache[6 + 8 * 0] =
2352  nnz_cache[7 + 8 * 0] = (h->cbp_table[top_xy] & 0x8000) >> 12;
2353  }
2354  if (IS_8x8DCT(left_type[LTOP])) {
2355  nnz_cache[3 + 8 * 1] =
2356  nnz_cache[3 + 8 * 2] = (h->cbp_table[left_xy[LTOP]] & 0x2000) >> 12; // FIXME check MBAFF
2357  }
2358  if (IS_8x8DCT(left_type[LBOT])) {
2359  nnz_cache[3 + 8 * 3] =
2360  nnz_cache[3 + 8 * 4] = (h->cbp_table[left_xy[LBOT]] & 0x8000) >> 12; // FIXME check MBAFF
2361  }
2362 
2363  if (IS_8x8DCT(mb_type)) {
2364  nnz_cache[scan8[0]] =
2365  nnz_cache[scan8[1]] =
2366  nnz_cache[scan8[2]] =
2367  nnz_cache[scan8[3]] = (sl->cbp & 0x1000) >> 12;
2368 
2369  nnz_cache[scan8[0 + 4]] =
2370  nnz_cache[scan8[1 + 4]] =
2371  nnz_cache[scan8[2 + 4]] =
2372  nnz_cache[scan8[3 + 4]] = (sl->cbp & 0x2000) >> 12;
2373 
2374  nnz_cache[scan8[0 + 8]] =
2375  nnz_cache[scan8[1 + 8]] =
2376  nnz_cache[scan8[2 + 8]] =
2377  nnz_cache[scan8[3 + 8]] = (sl->cbp & 0x4000) >> 12;
2378 
2379  nnz_cache[scan8[0 + 12]] =
2380  nnz_cache[scan8[1 + 12]] =
2381  nnz_cache[scan8[2 + 12]] =
2382  nnz_cache[scan8[3 + 12]] = (sl->cbp & 0x8000) >> 12;
2383  }
2384  }
2385 
2386  return 0;
2387 }
2388 
2389 static void loop_filter(const H264Context *h, H264SliceContext *sl, int start_x, int end_x)
2390 {
2391  uint8_t *dest_y, *dest_cb, *dest_cr;
2392  int linesize, uvlinesize, mb_x, mb_y;
2393  const int end_mb_y = sl->mb_y + FRAME_MBAFF(h);
2394  const int old_slice_type = sl->slice_type;
2395  const int pixel_shift = h->pixel_shift;
2396  const int block_h = 16 >> h->chroma_y_shift;
2397 
2398  if (h->postpone_filter)
2399  return;
2400 
2401  if (sl->deblocking_filter) {
2402  for (mb_x = start_x; mb_x < end_x; mb_x++)
2403  for (mb_y = end_mb_y - FRAME_MBAFF(h); mb_y <= end_mb_y; mb_y++) {
2404  int mb_xy, mb_type;
2405  mb_xy = sl->mb_xy = mb_x + mb_y * h->mb_stride;
2406  mb_type = h->cur_pic.mb_type[mb_xy];
2407 
2408  if (FRAME_MBAFF(h))
2409  sl->mb_mbaff =
2410  sl->mb_field_decoding_flag = !!IS_INTERLACED(mb_type);
2411 
2412  sl->mb_x = mb_x;
2413  sl->mb_y = mb_y;
2414  dest_y = h->cur_pic.f->data[0] +
2415  ((mb_x << pixel_shift) + mb_y * sl->linesize) * 16;
2416  dest_cb = h->cur_pic.f->data[1] +
2417  (mb_x << pixel_shift) * (8 << CHROMA444(h)) +
2418  mb_y * sl->uvlinesize * block_h;
2419  dest_cr = h->cur_pic.f->data[2] +
2420  (mb_x << pixel_shift) * (8 << CHROMA444(h)) +
2421  mb_y * sl->uvlinesize * block_h;
2422  // FIXME simplify above
2423 
2424  if (MB_FIELD(sl)) {
2425  linesize = sl->mb_linesize = sl->linesize * 2;
2426  uvlinesize = sl->mb_uvlinesize = sl->uvlinesize * 2;
2427  if (mb_y & 1) { // FIXME move out of this function?
2428  dest_y -= sl->linesize * 15;
2429  dest_cb -= sl->uvlinesize * (block_h - 1);
2430  dest_cr -= sl->uvlinesize * (block_h - 1);
2431  }
2432  } else {
2433  linesize = sl->mb_linesize = sl->linesize;
2434  uvlinesize = sl->mb_uvlinesize = sl->uvlinesize;
2435  }
2436  backup_mb_border(h, sl, dest_y, dest_cb, dest_cr, linesize,
2437  uvlinesize, 0);
2438  if (fill_filter_caches(h, sl, mb_type))
2439  continue;
2440  sl->chroma_qp[0] = get_chroma_qp(h->ps.pps, 0, h->cur_pic.qscale_table[mb_xy]);
2441  sl->chroma_qp[1] = get_chroma_qp(h->ps.pps, 1, h->cur_pic.qscale_table[mb_xy]);
2442 
2443  if (FRAME_MBAFF(h)) {
2444  ff_h264_filter_mb(h, sl, mb_x, mb_y, dest_y, dest_cb, dest_cr,
2445  linesize, uvlinesize);
2446  } else {
2447  ff_h264_filter_mb_fast(h, sl, mb_x, mb_y, dest_y, dest_cb,
2448  dest_cr, linesize, uvlinesize);
2449  }
2450  }
2451  }
2452  sl->slice_type = old_slice_type;
2453  sl->mb_x = end_x;
2454  sl->mb_y = end_mb_y - FRAME_MBAFF(h);
2455  sl->chroma_qp[0] = get_chroma_qp(h->ps.pps, 0, sl->qscale);
2456  sl->chroma_qp[1] = get_chroma_qp(h->ps.pps, 1, sl->qscale);
2457 }
2458 
2460 {
2461  const int mb_xy = sl->mb_x + sl->mb_y * h->mb_stride;
2462  int mb_type = (h->slice_table[mb_xy - 1] == sl->slice_num) ?
2463  h->cur_pic.mb_type[mb_xy - 1] :
2464  (h->slice_table[mb_xy - h->mb_stride] == sl->slice_num) ?
2465  h->cur_pic.mb_type[mb_xy - h->mb_stride] : 0;
2466  sl->mb_mbaff = sl->mb_field_decoding_flag = IS_INTERLACED(mb_type) ? 1 : 0;
2467 }
2468 
2469 /**
2470  * Draw edges and report progress for the last MB row.
2471  */
2473 {
2474  int top = 16 * (sl->mb_y >> FIELD_PICTURE(h));
2475  int pic_height = 16 * h->mb_height >> FIELD_PICTURE(h);
2476  int height = 16 << FRAME_MBAFF(h);
2477  int deblock_border = (16 + 4) << FRAME_MBAFF(h);
2478 
2479  if (sl->deblocking_filter) {
2480  if ((top + height) >= pic_height)
2481  height += deblock_border;
2482  top -= deblock_border;
2483  }
2484 
2485  if (top >= pic_height || (top + height) < 0)
2486  return;
2487 
2488  height = FFMIN(height, pic_height - top);
2489  if (top < 0) {
2490  height = top + height;
2491  top = 0;
2492  }
2493 
2494  ff_h264_draw_horiz_band(h, sl, top, height);
2495 
2496  if (h->droppable || sl->h264->slice_ctx[0].er.error_occurred)
2497  return;
2498 
2499  ff_thread_report_progress(&h->cur_pic_ptr->tf, top + height - 1,
2501 }
2502 
2504  int startx, int starty,
2505  int endx, int endy, int status)
2506 {
2507  if (!sl->h264->enable_er)
2508  return;
2509 
2510  if (CONFIG_ERROR_RESILIENCE) {
2511  ERContext *er = &sl->h264->slice_ctx[0].er;
2512 
2513  ff_er_add_slice(er, startx, starty, endx, endy, status);
2514  }
2515 }
2516 
2517 static int decode_slice(struct AVCodecContext *avctx, void *arg)
2518 {
2519  H264SliceContext *sl = arg;
2520  const H264Context *h = sl->h264;
2521  int lf_x_start = sl->mb_x;
2522  int orig_deblock = sl->deblocking_filter;
2523  int ret;
2524 
2525  sl->linesize = h->cur_pic_ptr->f->linesize[0];
2526  sl->uvlinesize = h->cur_pic_ptr->f->linesize[1];
2527 
2528  ret = alloc_scratch_buffers(sl, sl->linesize);
2529  if (ret < 0)
2530  return ret;
2531 
2532  sl->mb_skip_run = -1;
2533 
2534  av_assert0(h->block_offset[15] == (4 * ((scan8[15] - scan8[0]) & 7) << h->pixel_shift) + 4 * sl->linesize * ((scan8[15] - scan8[0]) >> 3));
2535 
2536  if (h->postpone_filter)
2537  sl->deblocking_filter = 0;
2538 
2539  sl->is_complex = FRAME_MBAFF(h) || h->picture_structure != PICT_FRAME ||
2540  (CONFIG_GRAY && (h->flags & AV_CODEC_FLAG_GRAY));
2541 
2543  const int start_i = av_clip(sl->resync_mb_x + sl->resync_mb_y * h->mb_width, 0, h->mb_num - 1);
2544  if (start_i) {
2545  int prev_status = h->slice_ctx[0].er.error_status_table[h->slice_ctx[0].er.mb_index2xy[start_i - 1]];
2546  prev_status &= ~ VP_START;
2547  if (prev_status != (ER_MV_END | ER_DC_END | ER_AC_END))
2548  h->slice_ctx[0].er.error_occurred = 1;
2549  }
2550  }
2551 
2552  if (h->ps.pps->cabac) {
2553  /* realign */
2554  align_get_bits(&sl->gb);
2555 
2556  /* init cabac */
2557  ret = ff_init_cabac_decoder(&sl->cabac,
2558  sl->gb.buffer + get_bits_count(&sl->gb) / 8,
2559  (get_bits_left(&sl->gb) + 7) / 8);
2560  if (ret < 0)
2561  return ret;
2562 
2564 
2565  for (;;) {
2566  // START_TIMER
2567  int ret, eos;
2568  if (sl->mb_x + sl->mb_y * h->mb_width >= sl->next_slice_idx) {
2569  av_log(h->avctx, AV_LOG_ERROR, "Slice overlaps with next at %d\n",
2570  sl->next_slice_idx);
2571  er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y, sl->mb_x,
2572  sl->mb_y, ER_MB_ERROR);
2573  return AVERROR_INVALIDDATA;
2574  }
2575 
2576  ret = ff_h264_decode_mb_cabac(h, sl);
2577  // STOP_TIMER("decode_mb_cabac")
2578 
2579  if (ret >= 0)
2580  ff_h264_hl_decode_mb(h, sl);
2581 
2582  // FIXME optimal? or let mb_decode decode 16x32 ?
2583  if (ret >= 0 && FRAME_MBAFF(h)) {
2584  sl->mb_y++;
2585 
2586  ret = ff_h264_decode_mb_cabac(h, sl);
2587 
2588  if (ret >= 0)
2589  ff_h264_hl_decode_mb(h, sl);
2590  sl->mb_y--;
2591  }
2592  eos = get_cabac_terminate(&sl->cabac);
2593 
2594  if ((h->workaround_bugs & FF_BUG_TRUNCATED) &&
2595  sl->cabac.bytestream > sl->cabac.bytestream_end + 2) {
2596  er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y, sl->mb_x - 1,
2597  sl->mb_y, ER_MB_END);
2598  if (sl->mb_x >= lf_x_start)
2599  loop_filter(h, sl, lf_x_start, sl->mb_x + 1);
2600  goto finish;
2601  }
2602  if (sl->cabac.bytestream > sl->cabac.bytestream_end + 2 )
2603  av_log(h->avctx, AV_LOG_DEBUG, "bytestream overread %"PTRDIFF_SPECIFIER"\n", sl->cabac.bytestream_end - sl->cabac.bytestream);
2604  if (ret < 0 || sl->cabac.bytestream > sl->cabac.bytestream_end + 4) {
2606  "error while decoding MB %d %d, bytestream %"PTRDIFF_SPECIFIER"\n",
2607  sl->mb_x, sl->mb_y,
2608  sl->cabac.bytestream_end - sl->cabac.bytestream);
2609  er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y, sl->mb_x,
2610  sl->mb_y, ER_MB_ERROR);
2611  return AVERROR_INVALIDDATA;
2612  }
2613 
2614  if (++sl->mb_x >= h->mb_width) {
2615  loop_filter(h, sl, lf_x_start, sl->mb_x);
2616  sl->mb_x = lf_x_start = 0;
2617  decode_finish_row(h, sl);
2618  ++sl->mb_y;
2619  if (FIELD_OR_MBAFF_PICTURE(h)) {
2620  ++sl->mb_y;
2621  if (FRAME_MBAFF(h) && sl->mb_y < h->mb_height)
2623  }
2624  }
2625 
2626  if (eos || sl->mb_y >= h->mb_height) {
2627  ff_tlog(h->avctx, "slice end %d %d\n",
2628  get_bits_count(&sl->gb), sl->gb.size_in_bits);
2629  er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y, sl->mb_x - 1,
2630  sl->mb_y, ER_MB_END);
2631  if (sl->mb_x > lf_x_start)
2632  loop_filter(h, sl, lf_x_start, sl->mb_x);
2633  goto finish;
2634  }
2635  }
2636  } else {
2637  for (;;) {
2638  int ret;
2639 
2640  if (sl->mb_x + sl->mb_y * h->mb_width >= sl->next_slice_idx) {
2641  av_log(h->avctx, AV_LOG_ERROR, "Slice overlaps with next at %d\n",
2642  sl->next_slice_idx);
2643  er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y, sl->mb_x,
2644  sl->mb_y, ER_MB_ERROR);
2645  return AVERROR_INVALIDDATA;
2646  }
2647 
2648  ret = ff_h264_decode_mb_cavlc(h, sl);
2649 
2650  if (ret >= 0)
2651  ff_h264_hl_decode_mb(h, sl);
2652 
2653  // FIXME optimal? or let mb_decode decode 16x32 ?
2654  if (ret >= 0 && FRAME_MBAFF(h)) {
2655  sl->mb_y++;
2656  ret = ff_h264_decode_mb_cavlc(h, sl);
2657 
2658  if (ret >= 0)
2659  ff_h264_hl_decode_mb(h, sl);
2660  sl->mb_y--;
2661  }
2662 
2663  if (ret < 0) {
2665  "error while decoding MB %d %d\n", sl->mb_x, sl->mb_y);
2666  er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y, sl->mb_x,
2667  sl->mb_y, ER_MB_ERROR);
2668  return ret;
2669  }
2670 
2671  if (++sl->mb_x >= h->mb_width) {
2672  loop_filter(h, sl, lf_x_start, sl->mb_x);
2673  sl->mb_x = lf_x_start = 0;
2674  decode_finish_row(h, sl);
2675  ++sl->mb_y;
2676  if (FIELD_OR_MBAFF_PICTURE(h)) {
2677  ++sl->mb_y;
2678  if (FRAME_MBAFF(h) && sl->mb_y < h->mb_height)
2680  }
2681  if (sl->mb_y >= h->mb_height) {
2682  ff_tlog(h->avctx, "slice end %d %d\n",
2683  get_bits_count(&sl->gb), sl->gb.size_in_bits);
2684 
2685  if ( get_bits_left(&sl->gb) == 0
2686  || get_bits_left(&sl->gb) > 0 && !(h->avctx->err_recognition & AV_EF_AGGRESSIVE)) {
2687  er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y,
2688  sl->mb_x - 1, sl->mb_y, ER_MB_END);
2689 
2690  goto finish;
2691  } else {
2692  er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y,
2693  sl->mb_x, sl->mb_y, ER_MB_END);
2694 
2695  return AVERROR_INVALIDDATA;
2696  }
2697  }
2698  }
2699 
2700  if (get_bits_left(&sl->gb) <= 0 && sl->mb_skip_run <= 0) {
2701  ff_tlog(h->avctx, "slice end %d %d\n",
2702  get_bits_count(&sl->gb), sl->gb.size_in_bits);
2703 
2704  if (get_bits_left(&sl->gb) == 0) {
2705  er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y,
2706  sl->mb_x - 1, sl->mb_y, ER_MB_END);
2707  if (sl->mb_x > lf_x_start)
2708  loop_filter(h, sl, lf_x_start, sl->mb_x);
2709 
2710  goto finish;
2711  } else {
2712  er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y, sl->mb_x,
2713  sl->mb_y, ER_MB_ERROR);
2714 
2715  return AVERROR_INVALIDDATA;
2716  }
2717  }
2718  }
2719  }
2720 
2721 finish:
2722  sl->deblocking_filter = orig_deblock;
2723  return 0;
2724 }
2725 
2726 /**
2727  * Call decode_slice() for each context.
2728  *
2729  * @param h h264 master context
2730  */
2732 {
2733  AVCodecContext *const avctx = h->avctx;
2734  H264SliceContext *sl;
2735  int context_count = h->nb_slice_ctx_queued;
2736  int ret = 0;
2737  int i, j;
2738 
2739  h->slice_ctx[0].next_slice_idx = INT_MAX;
2740 
2741  if (h->avctx->hwaccel || context_count < 1
2742 #if FF_API_CAP_VDPAU
2744 #endif
2745  )
2746  return 0;
2747 
2748  av_assert0(context_count && h->slice_ctx[context_count - 1].mb_y < h->mb_height);
2749 
2750  if (context_count == 1) {
2751 
2752  h->slice_ctx[0].next_slice_idx = h->mb_width * h->mb_height;
2753  h->postpone_filter = 0;
2754 
2755  ret = decode_slice(avctx, &h->slice_ctx[0]);
2756  h->mb_y = h->slice_ctx[0].mb_y;
2757  if (ret < 0)
2758  goto finish;
2759  } else {
2760  av_assert0(context_count > 0);
2761  for (i = 0; i < context_count; i++) {
2762  int next_slice_idx = h->mb_width * h->mb_height;
2763  int slice_idx;
2764 
2765  sl = &h->slice_ctx[i];
2766  if (CONFIG_ERROR_RESILIENCE) {
2767  sl->er.error_count = 0;
2768  }
2769 
2770  /* make sure none of those slices overlap */
2771  slice_idx = sl->mb_y * h->mb_width + sl->mb_x;
2772  for (j = 0; j < context_count; j++) {
2773  H264SliceContext *sl2 = &h->slice_ctx[j];
2774  int slice_idx2 = sl2->mb_y * h->mb_width + sl2->mb_x;
2775 
2776  if (i == j || slice_idx2 < slice_idx)
2777  continue;
2778  next_slice_idx = FFMIN(next_slice_idx, slice_idx2);
2779  }
2780  sl->next_slice_idx = next_slice_idx;
2781  }
2782 
2783  avctx->execute(avctx, decode_slice, h->slice_ctx,
2784  NULL, context_count, sizeof(h->slice_ctx[0]));
2785 
2786  /* pull back stuff from slices to master context */
2787  sl = &h->slice_ctx[context_count - 1];
2788  h->mb_y = sl->mb_y;
2789  if (CONFIG_ERROR_RESILIENCE) {
2790  for (i = 1; i < context_count; i++)
2792  }
2793 
2794  if (h->postpone_filter) {
2795  h->postpone_filter = 0;
2796 
2797  for (i = 0; i < context_count; i++) {
2798  int y_end, x_end;
2799 
2800  sl = &h->slice_ctx[i];
2801  y_end = FFMIN(sl->mb_y + 1, h->mb_height);
2802  x_end = (sl->mb_y >= h->mb_height) ? h->mb_width : sl->mb_x;
2803 
2804  for (j = sl->resync_mb_y; j < y_end; j += 1 + FIELD_OR_MBAFF_PICTURE(h)) {
2805  sl->mb_y = j;
2806  loop_filter(h, sl, j > sl->resync_mb_y ? 0 : sl->resync_mb_x,
2807  j == y_end - 1 ? x_end : h->mb_width);
2808  }
2809  }
2810  }
2811  }
2812 
2813 finish:
2814  h->nb_slice_ctx_queued = 0;
2815  return ret;
2816 }
int chroma_format_idc
Definition: h264_ps.h:47
#define AV_STEREO3D_FLAG_INVERT
Inverted views, Right/Bottom represents the left view.
Definition: stereo3d.h:148
int video_signal_type_present_flag
Definition: h264_ps.h:73
struct H264Context * h264
Definition: h264dec.h:178
#define AV_EF_AGGRESSIVE
consider things that a sane encoder should not do as an error
Definition: avcodec.h:3066
#define ff_tlog(ctx,...)
Definition: internal.h:75
av_cold void ff_videodsp_init(VideoDSPContext *ctx, int bpc)
Definition: videodsp.c:38
#define NULL
Definition: coverity.c:32
int ff_thread_can_start_frame(AVCodecContext *avctx)
const struct AVCodec * codec
Definition: avcodec.h:1770
AVRational framerate
Definition: avcodec.h:3460
discard all frames except keyframes
Definition: avcodec.h:829
int nb_mmco
Definition: h264dec.h:473
int workaround_bugs
Definition: h264dec.h:367
int long_ref
1->long term reference 0->short term reference
Definition: h264dec.h:154
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
Definition: error.h:59
int sei_recovery_frame_cnt
Definition: h264dec.h:163
int ff_h264_queue_decode_slice(H264Context *h, const H2645NAL *nal)
Submit a slice for decoding.
Definition: h264_slice.c:2020
H264POCContext poc
Definition: h264dec.h:459
int mb_num
Definition: h264dec.h:436
void av_buffer_unref(AVBufferRef **buf)
Free a given reference and automatically free the buffer if there are no more references to it...
Definition: buffer.c:125
int mb_aff_frame
Definition: h264dec.h:405
int recovery_frame_cnt
recovery_frame_cnt
Definition: h264_sei.h:112
int16_t mv_cache[2][5 *8][2]
Motion vector cache.
Definition: h264dec.h:299
#define AV_PIX_FMT_YUV444P14
Definition: pixfmt.h:389
static int get_se_golomb(GetBitContext *gb)
read signed exp golomb code.
Definition: golomb.h:183
int edge_emu_buffer_allocated
Definition: h264dec.h:287
int coded_width
Bitstream width / height, may be different from width/height e.g.
Definition: avcodec.h:1963
static void decode_finish_row(const H264Context *h, H264SliceContext *sl)
Draw edges and report progress for the last MB row.
Definition: h264_slice.c:2472
const char * fmt
Definition: avisynth_c.h:769
int first_field
Definition: h264dec.h:407
uint8_t field_scan8x8_q0[64]
Definition: h264dec.h:430
planar YUV 4:4:4, 24bpp, (1 Cr & Cb sample per 1x1 Y samples)
Definition: pixfmt.h:67
misc image utilities
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
Definition: get_bits.h:261
#define AV_LOG_WARNING
Something somehow does not look correct.
Definition: log.h:182
#define ER_MB_END
AVFrame * f
Definition: thread.h:36
int weighted_bipred_idc
Definition: h264_ps.h:116
int ff_h264_build_ref_list(H264Context *h, H264SliceContext *sl)
Definition: h264_refs.c:299
int left_mb_xy[LEFT_MBS]
Definition: h264dec.h:211
int chroma_qp_index_offset[2]
Definition: h264_ps.h:119
AVBufferRef * sps_list[MAX_SPS_COUNT]
Definition: h264_ps.h:138
const uint8_t * bytestream_end
Definition: cabac.h:49
static av_always_inline int get_chroma_qp(const PPS *pps, int t, int qscale)
Get the chroma qp.
Definition: h264dec.h:680
AVBufferRef * buf[AV_NUM_DATA_POINTERS]
AVBuffer references backing the data for this frame.
Definition: frame.h:393
hardware decoding through Videotoolbox
Definition: pixfmt.h:296
H264ChromaContext h264chroma
Definition: h264dec.h:342
uint16_t * cbp_table
Definition: h264dec.h:412
int luma_weight_flag[2]
7.4.3.2 luma_weight_lX_flag
Definition: h264_parse.h:35
MMCO mmco[MAX_MMCO_COUNT]
memory management control operations buffer.
Definition: h264dec.h:472
static void implicit_weight_table(const H264Context *h, H264SliceContext *sl, int field)
Initialize implicit_weight table.
Definition: h264_slice.c:659
Sequence parameter set.
Definition: h264_ps.h:43
enum AVColorRange color_range
MPEG vs JPEG YUV range.
Definition: avcodec.h:2498
int mb_y
Definition: h264dec.h:433
int coded_picture_number
Definition: h264dec.h:363
int bitstream_restriction_flag
Definition: h264_ps.h:84
planar GBR 4:4:4 24bpp
Definition: pixfmt.h:180
H264SEIAlternativeTransfer alternative_transfer
Definition: h264_sei.h:164
int num
Numerator.
Definition: rational.h:59
AVBufferRef * mb_type_buf
Definition: h264dec.h:138
int repeat_pict
When decoding, this signals how much the picture must be delayed.
Definition: frame.h:343
int bipred_scratchpad_allocated
Definition: h264dec.h:286
Views are next to each other, but when upscaling apply a checkerboard pattern.
Definition: stereo3d.h:117
#define DELAYED_PIC_REF
Value of Picture.reference when Picture is not a reference picture, but is held for delayed output...
Definition: diracdec.c:66
#define AV_PIX_FMT_GBRP10
Definition: pixfmt.h:395
#define VP_START
< current MB is the first after a resync marker
AVBufferPool * mb_type_pool
Definition: h264dec.h:549
int ff_h264_init_poc(int pic_field_poc[2], int *pic_poc, const SPS *sps, H264POCContext *pc, int picture_structure, int nal_ref_idc)
Definition: h264_parse.c:269
int chroma_x_shift
Definition: h264dec.h:360
const uint8_t * buffer
Definition: get_bits.h:56
Picture parameter set.
Definition: h264_ps.h:108
AVRational sample_aspect_ratio
sample aspect ratio (0 if unknown) That is the width of a pixel divided by the height of the pixel...
Definition: avcodec.h:2172
int16_t(*[2] motion_val)[2]
Definition: h264dec.h:136
int flags
Definition: h264dec.h:366
void ff_h264_flush_change(H264Context *h)
Definition: h264dec.c:483
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
Definition: avcodec.h:1989
int frame_mbs_only_flag
Definition: h264_ps.h:61
int mb_height
Definition: h264dec.h:434
H264Picture * delayed_pic[MAX_DELAYED_PIC_COUNT+2]
Definition: h264dec.h:464
int is_avc
Used to parse AVC variant of H.264.
Definition: h264dec.h:449
av_cold void ff_h264_pred_init(H264PredContext *h, int codec_id, const int bit_depth, int chroma_format_idc)
Set the intra prediction function pointers.
Definition: h264pred.c:411
AVBufferPool * ref_index_pool
Definition: h264dec.h:551
int height_from_caller
Definition: h264dec.h:542
uint8_t zigzag_scan8x8_cavlc[64]
Definition: h264dec.h:422
#define AV_PIX_FMT_YUV420P12
Definition: pixfmt.h:383
av_cold void ff_h264chroma_init(H264ChromaContext *c, int bit_depth)
Definition: h264chroma.c:41
ERPicture last_pic
H264SEIDisplayOrientation display_orientation
Definition: h264_sei.h:162
mpegvideo header.
int next_slice_idx
Definition: h264dec.h:236
static const uint8_t zigzag_scan8x8_cavlc[64+1]
Definition: h264_slice.c:97
H264Context.
Definition: h264dec.h:337
discard all non intra frames
Definition: avcodec.h:828
discard all
Definition: avcodec.h:830
AVFrame * f
Definition: h264dec.h:129
Views are next to each other.
Definition: stereo3d.h:67
size_t crop_bottom
Definition: frame.h:560
int bits_per_raw_sample
Bits per sample/pixel of internal libavcodec pixel/sample format.
Definition: avcodec.h:3164
uint32_t num_units_in_tick
Definition: h264_ps.h:80
static const uint8_t field_scan[16+1]
Definition: h264_slice.c:51
void ff_thread_await_progress(ThreadFrame *f, int n, int field)
Wait for earlier decoding threads to finish reference pictures.
H264Picture * long_ref[32]
Definition: h264dec.h:463
#define src
Definition: vp8dsp.c:254
int profile
profile
Definition: avcodec.h:3266
int picture_structure
Definition: h264dec.h:406
order of coefficients is actually GBR, also IEC 61966-2-1 (sRGB)
Definition: pixfmt.h:485
#define AV_WN32A(p, v)
Definition: intreadwrite.h:543
#define AV_COPY32(d, s)
Definition: intreadwrite.h:591
void av_display_matrix_flip(int32_t matrix[9], int hflip, int vflip)
Flip the input matrix horizontally and/or vertically.
Definition: display.c:65
unsigned int ref_count[2]
num_ref_idx_l0/1_active_minus1 + 1
Definition: h264dec.h:267
#define IN_RANGE(a, b, size)
Definition: h264_slice.c:265
#define REBASE_PICTURE(pic, new_ctx, old_ctx)
Definition: h264_slice.c:267
MMCO mmco[MAX_MMCO_COUNT]
Definition: h264dec.h:322
void av_display_rotation_set(int32_t matrix[9], double angle)
Initialize a transformation matrix describing a pure counterclockwise rotation by the specified angle...
Definition: display.c:50
int ff_h264_update_thread_context(AVCodecContext *dst, const AVCodecContext *src)
Definition: h264_slice.c:288
Switching Intra.
Definition: avutil.h:278
int setup_finished
Definition: h264dec.h:533
enum AVDiscard skip_frame
Skip decoding for selected frames.
Definition: avcodec.h:3386
int ff_h264_execute_decode_slices(H264Context *h)
Call decode_slice() for each context.
Definition: h264_slice.c:2731
H264SEIContext sei
Definition: h264dec.h:546
struct AVHWAccel * hwaccel
Hardware accelerator in use.
Definition: avcodec.h:3082
unsigned int crop_top
frame_cropping_rect_top_offset
Definition: h264_ps.h:69
#define USES_LIST(a, list)
Definition: mpegutils.h:101
void ff_color_frame(AVFrame *frame, const int color[4])
Definition: utils.c:512
#define av_assert0(cond)
assert() equivalent, that is always enabled.
Definition: avassert.h:37
const uint8_t * bytestream
Definition: cabac.h:48
int ref2frm[MAX_SLICES][2][64]
reference to frame number lists, used in the loop filter, the first 2 are for -2,-1 ...
Definition: h264dec.h:552
int deblocking_filter_parameters_present
deblocking_filter_parameters_present_flag
Definition: h264_ps.h:120
static double cb(void *priv, double x, double y)
Definition: vf_geq.c:106
void void avpriv_request_sample(void *avc, const char *msg,...) av_printf_format(2
Log a generic warning message about a missing feature.
const PPS * pps
Definition: h264_ps.h:144
4: bottom field, top field, in that order
Definition: h264_sei.h:48
static enum AVPixelFormat non_j_pixfmt(enum AVPixelFormat a)
Definition: h264_slice.c:1008
uint8_t
int full_range
Definition: h264_ps.h:74
unsigned int crop_left
frame_cropping_rect_left_offset
Definition: h264_ps.h:67
int gaps_in_frame_num_allowed_flag
Definition: h264_ps.h:57
#define MB_MBAFF(h)
Definition: h264dec.h:71
int slice_alpha_c0_offset
Definition: h264dec.h:194
Stereo 3D type: this structure describes how two videos are packed within a single video surface...
Definition: stereo3d.h:157
int poc
Definition: h264dec.h:171
void ff_h264_set_erpic(ERPicture *dst, H264Picture *src)
Definition: h264_picture.c:126
int field_picture
whether or not picture was encoded in separate fields
Definition: h264dec.h:158
int bit_depth_chroma
bit_depth_chroma_minus8 + 8
Definition: h264_ps.h:98
void ff_h264_hl_decode_mb(const H264Context *h, H264SliceContext *sl)
Definition: h264_mb.c:799
#define FF_DEBUG_PICT_INFO
Definition: avcodec.h:3004
size_t crop_left
Definition: frame.h:561
enum AVColorPrimaries color_primaries
Definition: h264_ps.h:76
int poc
frame POC
Definition: h264dec.h:148
int frame_num_offset
for POC type 2
Definition: h264_parse.h:51
int chroma_weight_flag[2]
7.4.3.2 chroma_weight_lX_flag
Definition: h264_parse.h:36
Multithreading support functions.
#define ER_MB_ERROR
int cabac
entropy_coding_mode_flag
Definition: h264_ps.h:110
#define MB_FIELD(sl)
Definition: h264dec.h:72
const char * from
Definition: jacosubdec.c:65
unsigned int crop_right
frame_cropping_rect_right_offset
Definition: h264_ps.h:68
#define AV_PIX_FMT_GBRP9
Definition: pixfmt.h:394
uint8_t(*[2] top_borders)[(16 *3)*2]
Definition: h264dec.h:285
int invalid_gap
Definition: h264dec.h:162
#define FF_API_CAP_VDPAU
Definition: version.h:70
ERPicture cur_pic
int frame_recovered
Initial frame has been completely recovered.
Definition: h264dec.h:523
Structure to hold side data for an AVFrame.
Definition: frame.h:163
int height
Definition: h264dec.h:359
#define PICT_BOTTOM_FIELD
Definition: mpegutils.h:38
#define height
#define MAX_PPS_COUNT
Definition: h264_ps.h:38
int pt
Definition: rtp.c:35
int transform_bypass
qpprime_y_zero_transform_bypass_flag
Definition: h264_ps.h:48
static void finish(void)
Definition: movenc.c:344
static int get_bits_count(const GetBitContext *s)
Definition: get_bits.h:199
void ff_h264_filter_mb(const H264Context *h, H264SliceContext *sl, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize)
char av_get_picture_type_char(enum AVPictureType pict_type)
Return a single letter to describe the given picture type pict_type.
Definition: utils.c:91
#define AV_CODEC_CAP_HWACCEL_VDPAU
Codec can export data for HW decoding (VDPAU).
Definition: avcodec.h:1038
planar YUV 4:2:2, 16bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV422P and setting col...
Definition: pixfmt.h:75
#define ER_MV_END
int ff_set_sar(AVCodecContext *avctx, AVRational sar)
Check that the provided sample aspect ratio is valid and set it on the codec context.
Definition: utils.c:226
int redundant_pic_cnt_present
redundant_pic_cnt_present_flag
Definition: h264_ps.h:122
int picture_structure
Definition: h264dec.h:240
int chroma_y_shift
Definition: h264dec.h:360
#define AV_LOG_VERBOSE
Detailed information.
Definition: log.h:192
int interlaced_frame
The content of the picture is interlaced.
Definition: frame.h:348
Video is not stereoscopic (and metadata has to be there).
Definition: stereo3d.h:55
AVBufferRef * qscale_table_buf
Definition: h264dec.h:132
static int h264_export_frame_props(H264Context *h)
Definition: h264_slice.c:1138
int av_reduce(int *dst_num, int *dst_den, int64_t num, int64_t den, int64_t max)
Reduce a fraction.
Definition: rational.c:35
#define AV_PIX_FMT_YUV422P12
Definition: pixfmt.h:384
H264Picture * parent
Definition: h264dec.h:174
#define FRAME_RECOVERED_SEI
Sufficient number of frames have been decoded since a SEI recovery point, so all the following frames...
Definition: h264dec.h:521
H264SEIAFD afd
Definition: h264_sei.h:156
#define AV_CODEC_FLAG_GRAY
Only decode/encode grayscale.
Definition: avcodec.h:904
high precision timer, useful to profile code
int recovered
picture at IDR or recovery point + recovery count
Definition: h264dec.h:161
Active Format Description data consisting of a single byte as specified in ETSI TS 101 154 using AVAc...
Definition: frame.h:89
#define AV_COPY64(d, s)
Definition: intreadwrite.h:595
int ff_h264_decode_ref_pic_list_reordering(H264SliceContext *sl, void *logctx)
Definition: h264_refs.c:421
#define FFALIGN(x, a)
Definition: macros.h:48
int chroma_qp[2]
Definition: h264dec.h:188
#define av_log(a,...)
int last_pocs[MAX_DELAYED_PIC_COUNT]
Definition: h264dec.h:465
const char * to
Definition: webvttdec.c:34
void ff_h264_direct_ref_list_init(const H264Context *const h, H264SliceContext *sl)
Definition: h264_direct.c:121
int width
Definition: h264dec.h:359
static int h264_frame_start(H264Context *h)
Definition: h264_slice.c:449
int a53_caption_size
Definition: h264_sei.h:96
H.264 common definitions.
void ff_h264_draw_horiz_band(const H264Context *h, H264SliceContext *sl, int y, int height)
Definition: h264dec.c:102
#define U(x)
Definition: vp56_arith.h:37
#define HWACCEL_MAX
static int get_bits_left(GetBitContext *gb)
Definition: get_bits.h:587
H.264 parameter set handling.
H264Picture DPB[H264_MAX_PICTURE_COUNT]
Definition: h264dec.h:345
enum AVColorTransferCharacteristic color_trc
Definition: h264_ps.h:77
int mb_aff
mb_adaptive_frame_field_flag
Definition: h264_ps.h:62
H264PredContext hpc
Definition: h264dec.h:385
AVBufferRef * sps_ref
Definition: h264_ps.h:142
int chroma_log2_weight_denom
Definition: h264_parse.h:34
int width
Definition: frame.h:259
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:176
int has_b_frames
Size of the frame reordering buffer in the decoder.
Definition: avcodec.h:2083
#define td
Definition: regdef.h:70
int flags
Additional information about the frame packing.
Definition: stereo3d.h:166
static int get_ue_golomb(GetBitContext *gb)
Read an unsigned Exp-Golomb code in the range 0 to 8190.
Definition: golomb.h:53
static int alloc_scratch_buffers(H264SliceContext *sl, int linesize)
Definition: h264_slice.c:129
int poc_type
pic_order_cnt_type
Definition: h264_ps.h:50
void ff_er_add_slice(ERContext *s, int startx, int starty, int endx, int endy, int status)
Add a slice.
int context_initialized
Definition: h264dec.h:365
#define PTRDIFF_SPECIFIER
Definition: internal.h:254
ERContext er
Definition: h264dec.h:180
int nal_unit_type
Definition: h264dec.h:442
int ff_h264_decode_ref_pic_marking(H264SliceContext *sl, GetBitContext *gb, const H2645NAL *nal, void *logctx)
Definition: h264_refs.c:823
int ff_h264_get_profile(const SPS *sps)
Compute profile from profile_idc and constraint_set?_flags.
Definition: h264_parse.c:504
int num_reorder_frames
Definition: h264_ps.h:85
discard all bidirectional frames
Definition: avcodec.h:827
#define AVERROR(e)
Definition: error.h:43
void * hwaccel_picture_private
hardware accelerator private data
Definition: h264dec.h:142
int av_pix_fmt_get_chroma_sub_sample(enum AVPixelFormat pix_fmt, int *h_shift, int *v_shift)
Utility function to access log2_chroma_w log2_chroma_h from the pixel format AVPixFmtDescriptor.
Definition: pixdesc.c:2447
Display matrix.
Views are packed per line, as if interlaced.
Definition: stereo3d.h:129
int active_thread_type
Which multithreading methods are in use by the codec.
Definition: avcodec.h:3211
static const uint8_t field_scan8x8[64+1]
Definition: h264_slice.c:58
int capabilities
Codec capabilities.
Definition: avcodec.h:3758
const uint8_t ff_zigzag_scan[16+1]
Definition: mathtables.c:109
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
Definition: log.h:197
ATSC A53 Part 4 Closed Captions.
Definition: frame.h:58
#define FIELD_PICTURE(h)
Definition: h264dec.h:74
int picture_idr
Definition: h264dec.h:377
static int init_dimensions(H264Context *h)
Definition: h264_slice.c:871
const char * arg
Definition: jacosubdec.c:66
int deblocking_filter
disable_deblocking_filter_idc with 1 <-> 0
Definition: h264dec.h:193
uint8_t(*[2] mvd_table)[2]
Definition: h264dec.h:416
int prev_interlaced_frame
Complement sei_pic_struct SEI_PIC_STRUCT_TOP_BOTTOM and SEI_PIC_STRUCT_BOTTOM_TOP indicate interlaced...
Definition: h264dec.h:497
int flags
AV_CODEC_FLAG_*.
Definition: avcodec.h:1856
static int fill_filter_caches(const H264Context *h, H264SliceContext *sl, int mb_type)
Definition: h264_slice.c:2247
uint16_t width
Definition: gdv.c:47
ThreadFrame tf
Definition: h264dec.h:130
simple assert() macros that are a bit more flexible than ISO C assert().
int weighted_pred
weighted_pred_flag
Definition: h264_ps.h:115
#define PICT_TOP_FIELD
Definition: mpegutils.h:37
H264QpelContext h264qpel
Definition: h264dec.h:343
#define AV_PIX_FMT_YUV444P10
Definition: pixfmt.h:382
int direct_spatial_mv_pred
Definition: h264dec.h:251
H264SEIUnregistered unregistered
Definition: h264_sei.h:158
HW acceleration through VDA, data[3] contains a CVPixelBufferRef.
Definition: pixfmt.h:224
int frame_num
frame_num (raw frame_num from slice header)
Definition: h264dec.h:149
const uint8_t ff_h264_golomb_to_pict_type[5]
Definition: h264data.c:37
#define MAX_SLICES
Definition: dxva2_hevc.c:33
int valid_recovery_point
Are the SEI recovery points looking valid.
Definition: h264dec.h:502
GLsizei count
Definition: opengl_enc.c:109
int ff_h264_get_slice_type(const H264SliceContext *sl)
Reconstruct bitstream slice_type.
Definition: h264_slice.c:2145
#define FFMAX(a, b)
Definition: common.h:94
#define fail()
Definition: checkasm.h:109
uint8_t active_format_description
Definition: h264_sei.h:92
int delta_pic_order_always_zero_flag
Definition: h264_ps.h:52
void av_image_copy(uint8_t *dst_data[4], int dst_linesizes[4], const uint8_t *src_data[4], const int src_linesizes[4], enum AVPixelFormat pix_fmt, int width, int height)
Copy image in src_data to dst_data.
Definition: imgutils.c:385
int * mb_index2xy
int slice_type_nos
S free slice type (SI/SP are remapped to I/P)
Definition: h264dec.h:184
uint8_t zigzag_scan8x8[64]
Definition: h264dec.h:421
AVBufferRef * hwaccel_priv_buf
Definition: h264dec.h:141
planar YUV 4:2:2, 16bpp, (1 Cr & Cb sample per 2x1 Y samples)
Definition: pixfmt.h:66
AVStereo3D * av_stereo3d_create_side_data(AVFrame *frame)
Allocate a complete AVFrameSideData and add it to the frame.
Definition: stereo3d.c:33
int crop_bottom
Definition: h264dec.h:382
uint8_t * error_status_table
size_t crop_top
Definition: frame.h:559
Views are alternated temporally.
Definition: stereo3d.h:92
void av_fast_malloc(void *ptr, unsigned int *size, size_t min_size)
Allocate a buffer, reusing the given one if large enough.
Definition: mem.c:469
int ff_h264_parse_ref_count(int *plist_count, int ref_count[2], GetBitContext *gb, const PPS *pps, int slice_type_nos, int picture_structure, void *logctx)
Definition: h264_parse.c:216
int nal_length_size
Number of bytes used for nal length (1, 2 or 4)
Definition: h264dec.h:450
useful rectangle filling function
#define AV_PIX_FMT_YUV422P9
Definition: pixfmt.h:377
int refs
number of reference frames
Definition: avcodec.h:2442
int prev_poc_msb
poc_msb of the last reference pic for POC type 0
Definition: h264_parse.h:49
AVBufferRef * motion_val_buf[2]
Definition: h264dec.h:135
int ref_frame_count
num_ref_frames
Definition: h264_ps.h:56
enum AVPixelFormat * pix_fmts
array of supported pixel formats, or NULL if unknown, array is terminated by -1
Definition: avcodec.h:3760
enum AVPictureType pict_type
Picture type of the frame.
Definition: frame.h:284
int flags
Frame flags, a combination of AV_FRAME_FLAGS.
Definition: frame.h:439
H264_SEI_PicStructType pic_struct
Definition: h264_sei.h:70
int err_recognition
Error recognition; may misdetect some more or less valid parts as errors.
Definition: avcodec.h:3050
#define av_assert1(cond)
assert() equivalent, that does not lie in speed critical code.
Definition: avassert.h:53
int ct_type
Bit set of clock types for fields/frames in picture timing SEI message.
Definition: h264_sei.h:77
void av_fast_mallocz(void *ptr, unsigned int *size, size_t min_size)
Allocate and clear a buffer, reusing the given one if large enough.
Definition: mem.c:474
#define FFMIN(a, b)
Definition: common.h:96
uint16_t * slice_table
slice_table_base + 2*mb_stride + 1
Definition: h264dec.h:402
static void copy_picture_range(H264Picture **to, H264Picture **from, int count, H264Context *new_base, H264Context *old_base)
Definition: h264_slice.c:272
static int h264_field_start(H264Context *h, const H264SliceContext *sl, const H2645NAL *nal, int first_slice)
Definition: h264_slice.c:1402
uint8_t field_scan8x8_cavlc[64]
Definition: h264dec.h:425
#define IS_DIRECT(a)
Definition: mpegutils.h:86
CABACContext cabac
Cabac.
Definition: h264dec.h:318
int colour_description_present_flag
Definition: h264_ps.h:75
unsigned int first_mb_addr
Definition: h264dec.h:234
int reference
Definition: h264dec.h:160
static void er_add_slice(H264SliceContext *sl, int startx, int starty, int endx, int endy, int status)
Definition: h264_slice.c:2503
#define LEFT_MBS
Definition: h264dec.h:75
planar YUV 4:2:0, 12bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV420P and setting col...
Definition: pixfmt.h:74
AVRational sar
Definition: h264_ps.h:72
int width
picture width / height.
Definition: avcodec.h:1948
int redundant_pic_count
Definition: h264dec.h:244
int nb_slice_ctx
Definition: h264dec.h:351
H264PredWeightTable pwt
Definition: h264dec.h:197
int long_ref_count
number of actual long term references
Definition: h264dec.h:477
#define ER_DC_END
uint32_t * mb_type
Definition: h264dec.h:139
#define AV_FRAME_FLAG_CORRUPT
The frame data may be corrupted, e.g.
Definition: frame.h:427
void ff_thread_report_progress(ThreadFrame *f, int n, int field)
Notify later decoding threads when part of their reference picture is ready.
static int h264_init_ps(H264Context *h, const H264SliceContext *sl, int first_slice)
Definition: h264_slice.c:1019
int size_in_bits
Definition: get_bits.h:58
int32_t
int ff_init_cabac_decoder(CABACContext *c, const uint8_t *buf, int buf_size)
Definition: cabac.c:177
enum AVColorPrimaries color_primaries
Chromaticity coordinates of the source primaries.
Definition: avcodec.h:2477
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
Definition: common.h:72
#define FF_THREAD_SLICE
Decode more than one part of a single frame at once.
Definition: avcodec.h:3204
Context Adaptive Binary Arithmetic Coder inline functions.
int level
level
Definition: avcodec.h:3364
int init_qp
pic_init_qp_minus26 + 26
Definition: h264_ps.h:117
H.264 / AVC / MPEG-4 part10 codec.
int mmco_reset
Definition: h264dec.h:474
H264SliceContext * slice_ctx
Definition: h264dec.h:350
int direct_8x8_inference_flag
Definition: h264_ps.h:63
static int h264_select_output_frame(H264Context *h)
Definition: h264_slice.c:1299
#define AV_EF_EXPLODE
abort decoding on minor error detection
Definition: avcodec.h:3061
int reference
Definition: h264dec.h:170
int ticks_per_frame
For some codecs, the time base is closer to the field rate than the frame rate.
Definition: avcodec.h:1907
int top_borders_allocated[2]
Definition: h264dec.h:288
static void fill_rectangle(int x, int y, int w, int h)
Definition: ffplay.c:822
#define FIELD_OR_MBAFF_PICTURE(h)
Definition: h264dec.h:91
uint8_t * a53_caption
Definition: h264_sei.h:97
int ref_idc
H.264 only, nal_ref_idc.
Definition: h2645_parse.h:65
static void init_scan_tables(H264Context *h)
initialize scan tables
Definition: h264_slice.c:723
static int av_unused get_cabac_terminate(CABACContext *c)
int quincunx_sampling_flag
Definition: h264_sei.h:127
#define AV_PIX_FMT_YUV444P9
Definition: pixfmt.h:378
#define AV_PIX_FMT_GBRP14
Definition: pixfmt.h:397
int type
NAL unit type.
Definition: h2645_parse.h:52
#define FF_ARRAY_ELEMS(a)
the normal 2^n-1 "JPEG" YUV ranges
Definition: pixfmt.h:510
static int init_table_pools(H264Context *h)
Definition: h264_slice.c:161
uint8_t * edge_emu_buffer
Definition: h264dec.h:284
static unsigned get_ue_golomb_long(GetBitContext *gb)
Read an unsigned Exp-Golomb code in the range 0 to UINT32_MAX-1.
Definition: golomb.h:85
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
Definition: error.h:62
int pic_order_present
pic_order_present_flag
Definition: h264_ps.h:111
uint8_t zigzag_scan_q0[16]
Definition: h264dec.h:426
int format
format of the frame, -1 if unknown or unset Values correspond to enum AVPixelFormat for video frames...
Definition: frame.h:274
int bit_depth_luma
luma bit depth from sps to detect changes
Definition: h264dec.h:452
int chroma_format_idc
chroma format from sps to detect changes
Definition: h264dec.h:453
VideoDSPContext vdsp
Definition: h264dec.h:340
int timing_info_present_flag
Definition: h264_ps.h:79
int coded_picture_number
picture number in bitstream order
Definition: frame.h:315
enum AVStereo3DType type
How views are packed within the video.
Definition: stereo3d.h:161
int mb_stride
Definition: h264dec.h:435
Views are packed in a checkerboard-like structure per pixel.
Definition: stereo3d.h:104
int postpone_filter
Definition: h264dec.h:372
#define IS_INTERLACED(a)
Definition: mpegutils.h:85
AVCodecContext * avctx
Definition: h264dec.h:339
uint8_t zigzag_scan8x8_q0[64]
Definition: h264dec.h:427
#define AV_PIX_FMT_YUV420P14
Definition: pixfmt.h:387
H264_SEI_FpaType frame_packing_arrangement_type
Definition: h264_sei.h:124
5: top field, bottom field, top field repeated, in that order
Definition: h264_sei.h:49
Libavcodec external API header.
#define MAX_DELAYED_PIC_COUNT
Definition: h264dec.h:56
Views are on top of each other.
Definition: stereo3d.h:79
int last_qscale_diff
Definition: h264dec.h:190
This side data contains a 3x3 transformation matrix describing an affine transformation that needs to...
Definition: frame.h:84
AVBufferRef * pps_list[MAX_PPS_COUNT]
Definition: h264_ps.h:139
enum AVCodecID codec_id
Definition: avcodec.h:1778
static int get_ue_golomb_31(GetBitContext *gb)
read unsigned exp golomb code, constraint to a max of 31.
Definition: golomb.h:100
int crop_left
Definition: h264dec.h:379
int delta_poc_bottom
Definition: h264_parse.h:46
ERPicture next_pic
int linesize[AV_NUM_DATA_POINTERS]
For video, size in bytes of each picture line.
Definition: frame.h:232
H264Picture * short_ref[32]
Definition: h264dec.h:462
int next_outputed_poc
Definition: h264dec.h:467
int ff_h264_decode_mb_cabac(const H264Context *h, H264SliceContext *sl)
Decode a macroblock.
Definition: h264_cabac.c:1914
int explicit_ref_marking
Definition: h264dec.h:475
#define AV_CODEC_FLAG2_FAST
Allow non spec compliant speedup tricks.
Definition: avcodec.h:944
int field_poc[2]
top/bottom POC
Definition: h264dec.h:147
int debug
debug
Definition: avcodec.h:3003
int ff_thread_get_buffer(AVCodecContext *avctx, ThreadFrame *f, int flags)
Wrapper around get_buffer() for frame-multithreaded codecs.
int recovery_frame
recovery_frame is the frame_num at which the next frame should be fully constructed.
Definition: h264dec.h:510
main external API structure.
Definition: avcodec.h:1761
int qp_thresh
QP threshold to skip loopfilter.
Definition: h264dec.h:189
int explicit_ref_marking
Definition: h264dec.h:324
uint8_t * data
The data buffer.
Definition: buffer.h:89
#define fp
Definition: regdef.h:44
uint8_t * data
Definition: frame.h:165
static int h264_slice_header_parse(const H264Context *h, H264SliceContext *sl, const H2645NAL *nal)
Definition: h264_slice.c:1667
H264SEIA53Caption a53_caption
Definition: h264_sei.h:157
void * buf
Definition: avisynth_c.h:690
int implicit_weight[48][48][2]
Definition: h264_parse.h:40
size_t crop_right
Definition: frame.h:562
int8_t * qscale_table
Definition: h264dec.h:133
static const uint8_t scan8[16 *3+3]
Definition: h264dec.h:643
#define CABAC(h)
Definition: h264_cabac.c:28
AVBufferRef * av_buffer_allocz(int size)
Same as av_buffer_alloc(), except the returned buffer will be initialized to zero.
Definition: buffer.c:83
AVBuffer * buffer
Definition: buffer.h:82
static const uint8_t field_scan8x8_cavlc[64+1]
Definition: h264_slice.c:77
static unsigned int get_bits1(GetBitContext *s)
Definition: get_bits.h:313
#define AV_PIX_FMT_YUV420P10
Definition: pixfmt.h:379
AVCodecContext * owner[2]
Definition: thread.h:37
int coded_height
Definition: avcodec.h:1963
Switching Predicted.
Definition: avutil.h:279
int prev_frame_num
frame_num of the last pic for POC type 1/2
Definition: h264_parse.h:53
#define FF_CODEC_PROPERTY_CLOSED_CAPTIONS
Definition: avcodec.h:3583
AVFrameSideData * av_frame_new_side_data(AVFrame *frame, enum AVFrameSideDataType type, int size)
Add a new side data to a frame.
Definition: frame.c:674
uint8_t non_zero_count_cache[15 *8]
non zero coeff count cache.
Definition: h264dec.h:294
void av_buffer_pool_uninit(AVBufferPool **ppool)
Mark the pool as being available for freeing.
Definition: buffer.c:275
#define FRAME_MBAFF(h)
Definition: h264dec.h:73
enum AVColorSpace colorspace
YUV colorspace type.
Definition: avcodec.h:2491
enum AVColorTransferCharacteristic color_trc
Color Transfer Characteristic.
Definition: avcodec.h:2484
#define LBOT
Definition: h264dec.h:77
HW acceleration through VDPAU, Picture.data[3] contains a VdpVideoSurface.
Definition: pixfmt.h:209
static av_always_inline uint32_t pack16to32(unsigned a, unsigned b)
Definition: h264dec.h:659
int8_t * ref_index[2]
Definition: h264dec.h:145
int ff_h264_ref_picture(H264Context *h, H264Picture *dst, H264Picture *src)
Definition: h264_picture.c:67
A reference counted buffer type.
int pixel_shift
0 for 8-bit H.264, 1 for high-bit-depth H.264
Definition: h264dec.h:356
int mmco_reset
MMCO_RESET set this 1.
Definition: h264dec.h:150
int content_interpretation_type
Definition: h264_sei.h:126
H264Picture * cur_pic_ptr
Definition: h264dec.h:346
#define LIST_NOT_USED
Definition: h264dec.h:389
const uint8_t ff_zigzag_direct[64]
Definition: mathtables.c:98
ptrdiff_t mb_uvlinesize
Definition: h264dec.h:228
static int h264_slice_header_init(H264Context *h)
Definition: h264_slice.c:913
int mb_mbaff
mb_aff_frame && mb_field_decoding_flag
Definition: h264dec.h:242
enum AVPixelFormat ff_thread_get_format(AVCodecContext *avctx, const enum AVPixelFormat *fmt)
Wrapper around get_format() for frame-multithreaded codecs.
int enable_er
Definition: h264dec.h:544
#define AV_PIX_FMT_YUV420P9
Definition: pixfmt.h:376
#define IS_INTER(a)
Definition: mpegutils.h:81
#define FF_COMPLIANCE_STRICT
Strictly conform to all the things in the spec no matter what consequences.
Definition: avcodec.h:2983
const SPS * sps
Definition: h264_ps.h:145
unsigned int sps_id
Definition: h264_ps.h:109
#define TRANSPOSE(x)
H264SEIPictureTiming picture_timing
Definition: h264_sei.h:155
int width_from_caller
Definition: h264dec.h:541
int log2_max_poc_lsb
log2_max_pic_order_cnt_lsb_minus4
Definition: h264_ps.h:51
H264SEIRecoveryPoint recovery_point
Definition: h264_sei.h:159
ptrdiff_t mb_linesize
may be equal to s->linesize or s->linesize * 2, for mbaff
Definition: h264dec.h:227
HW decoding through DXVA2, Picture.data[3] contains a LPDIRECT3DSURFACE9 pointer. ...
Definition: pixfmt.h:148
int16_t slice_row[MAX_SLICES]
to detect when MAX_SLICES is too low
Definition: h264dec.h:537
static enum AVPixelFormat pix_fmts[]
Definition: libkvazaar.c:266
3: top field, bottom field, in that order
Definition: h264_sei.h:47
static int alloc_picture(H264Context *h, H264Picture *pic)
Definition: h264_slice.c:188
ptrdiff_t linesize
Definition: h264dec.h:226
int block_offset[2 *(16 *3)]
block_offset[ 0..23] for frame macroblocks block_offset[24..47] for field macroblocks ...
Definition: h264dec.h:396
uint32_t time_scale
Definition: h264_ps.h:81
#define AV_PIX_FMT_YUV422P14
Definition: pixfmt.h:388
#define AV_PIX_FMT_GBRP12
Definition: pixfmt.h:396
int transform_8x8_mode
transform_8x8_mode_flag
Definition: h264_ps.h:123
ptrdiff_t uvlinesize
Definition: h264dec.h:226
#define AV_PIX_FMT_YUV422P10
Definition: pixfmt.h:380
static int h264_slice_init(H264Context *h, H264SliceContext *sl, const H2645NAL *nal)
Definition: h264_slice.c:1884
int pic_struct_present_flag
Definition: h264_ps.h:91
#define CHROMA444(h)
Definition: h264dec.h:99
unsigned int list_count
Definition: h264dec.h:268
uint8_t zigzag_scan[16]
Definition: h264dec.h:420
#define AV_PIX_FMT_YUV444P12
Definition: pixfmt.h:386
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:215
int prev_poc_lsb
poc_lsb of the last reference pic for POC type 0
Definition: h264_parse.h:50
static void release_unused_pictures(H264Context *h, int remove_current)
Definition: h264_slice.c:116
int ff_h264_alloc_tables(H264Context *h)
Allocate tables.
Definition: h264dec.c:180
#define AV_ZERO128(d)
Definition: intreadwrite.h:627
Hardware surfaces for Direct3D11.
Definition: pixfmt.h:327
the normal 219*2^(n-8) "MPEG" YUV ranges
Definition: pixfmt.h:509
int left_type[LEFT_MBS]
Definition: h264dec.h:216
static int av_cmp_q(AVRational a, AVRational b)
Compare two rationals.
Definition: rational.h:89
hardware decoding through VDA
Definition: pixfmt.h:179
int nb_slice_ctx_queued
Definition: h264dec.h:352
discard all non reference
Definition: avcodec.h:826
int ff_h264_field_end(H264Context *h, H264SliceContext *sl, int in_setup)
Definition: h264_picture.c:149
AVBufferPool * qscale_table_pool
Definition: h264dec.h:548
H264Picture * next_output_pic
Definition: h264dec.h:466
volatile int error_count
int mb_height
Definition: h264_ps.h:60
AVBufferPool * motion_val_pool
Definition: h264dec.h:550
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
Definition: pixfmt.h:62
int delta_poc_bottom
Definition: h264dec.h:328
#define IS_8x8DCT(a)
Definition: h264dec.h:104
common internal api header.
if(ret< 0)
Definition: vf_mcdeint.c:279
AVBufferPool * av_buffer_pool_init(int size, AVBufferRef *(*alloc)(int size))
Allocate and initialize a buffer pool.
Definition: buffer.c:238
static int ref[MAX_W *MAX_W]
Definition: jpeg2000dwt.c:107
#define AV_COPY128(d, s)
Definition: intreadwrite.h:599
static enum AVPixelFormat get_pixel_format(H264Context *h, int force_callback)
Definition: h264_slice.c:757
AVBufferRef * pps_ref
Definition: h264_ps.h:141
int log2_max_frame_num
log2_max_frame_num_minus4 + 4
Definition: h264_ps.h:49
int missing_fields
Definition: h264dec.h:527
static double c[64]
const char * av_color_transfer_name(enum AVColorTransferCharacteristic transfer)
Definition: pixdesc.c:2784
H264ParamSets ps
Definition: h264dec.h:455
H264SEIFramePacking frame_packing
Definition: h264_sei.h:161
H.264 / AVC / MPEG-4 part10 motion vector prediction.
AVBufferRef * av_buffer_ref(AVBufferRef *buf)
Create a new reference to an AVBuffer.
Definition: buffer.c:93
Bi-dir predicted.
Definition: avutil.h:276
planar YUV 4:4:4, 24bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV444P and setting col...
Definition: pixfmt.h:76
Stereoscopic video.
Views are packed per column.
Definition: stereo3d.h:141
int cur_chroma_format_idc
Definition: h264dec.h:535
int8_t * intra4x4_pred_mode
Definition: h264dec.h:206
unsigned properties
Properties of the stream that gets decoded.
Definition: avcodec.h:3581
enum AVDiscard skip_loop_filter
Skip loop filtering for selected frames.
Definition: avcodec.h:3372
int den
Denominator.
Definition: rational.h:60
static void predict_field_decoding_flag(const H264Context *h, H264SliceContext *sl)
Definition: h264_slice.c:2459
int ff_h264_decode_mb_cavlc(const H264Context *h, H264SliceContext *sl)
Decode a macroblock.
Definition: h264_cavlc.c:702
GetBitContext gb
Definition: h2645_parse.h:47
int bit_depth_luma
bit_depth_luma_minus8 + 8
Definition: h264_ps.h:97
#define IS_INTRA(x, y)
int present
Definition: h264_sei.h:91
int delta_poc[2]
Definition: h264_parse.h:47
void ff_h264_free_tables(H264Context *h)
Definition: h264dec.c:137
void * priv_data
Definition: avcodec.h:1803
#define LTOP
Definition: h264dec.h:76
#define PICT_FRAME
Definition: mpegutils.h:39
static av_always_inline void backup_mb_border(const H264Context *h, H264SliceContext *sl, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int simple)
Definition: h264_slice.c:557
uint8_t zigzag_scan8x8_cavlc_q0[64]
Definition: h264dec.h:428
int8_t ref_cache[2][5 *8]
Definition: h264dec.h:300
#define AV_CODEC_FLAG_OUTPUT_CORRUPT
Output even those frames that might be corrupted.
Definition: avcodec.h:884
unsigned int pps_id
Definition: h264dec.h:278
int(* execute)(struct AVCodecContext *c, int(*func)(struct AVCodecContext *c2, void *arg), void *arg2, int *ret, int count, int size)
The codec may call this to execute several independent things.
Definition: avcodec.h:3232
int top_field_first
If the content is interlaced, is top field displayed first.
Definition: frame.h:353
int frame_priv_data_size
Size of per-frame hardware accelerator private data.
Definition: avcodec.h:3964
#define CHROMA422(h)
Definition: h264dec.h:98
#define FF_BUG_TRUNCATED
Definition: avcodec.h:2966
H264Picture cur_pic
Definition: h264dec.h:347
int key_frame
1 -> keyframe, 0-> not
Definition: frame.h:279
#define AV_ZERO32(d)
Definition: intreadwrite.h:619
int mb_width
Definition: h264dec.h:434
static int find_unused_picture(H264Context *h)
Definition: h264_slice.c:253
int current_slice
current slice number, used to initialize slice_num of each thread/context
Definition: h264dec.h:487
int ff_h264_execute_ref_pic_marking(H264Context *h)
Execute the reference picture marking (memory management control operations).
Definition: h264_refs.c:608
static const uint8_t * align_get_bits(GetBitContext *s)
Definition: get_bits.h:464
int ff_h264_pred_weight_table(GetBitContext *gb, const SPS *sps, const int *ref_count, int slice_type_nos, H264PredWeightTable *pwt, int picture_structure, void *logctx)
Definition: h264_parse.c:27
int mb_width
pic_width_in_mbs_minus1 + 1
Definition: h264_ps.h:58
int flags2
AV_CODEC_FLAG2_*.
Definition: avcodec.h:1863
uint32_t * mb2b_xy
Definition: h264dec.h:398
H264Ref ref_list[2][48]
0..15: frame refs, 16..47: mbaff field refs.
Definition: h264dec.h:269
uint8_t field_scan8x8_cavlc_q0[64]
Definition: h264dec.h:431
int cur_bit_depth_luma
Definition: h264dec.h:536
int crop_top
Definition: h264dec.h:381
AVBufferRef * ref_index_buf[2]
Definition: h264dec.h:144
av_cold void ff_h264dsp_init(H264DSPContext *c, const int bit_depth, const int chroma_format_idc)
Definition: h264dsp.c:67
int frame_number
Frame counter, set by libavcodec.
Definition: avcodec.h:2554
H264DSPContext h264dsp
Definition: h264dec.h:341
void ff_er_frame_start(ERContext *s)
int height
Definition: frame.h:259
#define AV_CODEC_FLAG2_SHOW_ALL
Show all frames before the first keyframe.
Definition: avcodec.h:972
FILE * out
Definition: movenc.c:54
uint8_t(*[2] mvd_table)[2]
Definition: h264dec.h:313
uint8_t field_scan8x8[64]
Definition: h264dec.h:424
int slice_type_fixed
Definition: h264dec.h:185
static av_always_inline void fill_filter_caches_inter(const H264Context *h, H264SliceContext *sl, int mb_type, int top_xy, int left_xy[LEFT_MBS], int top_type, int left_type[LEFT_MBS], int mb_xy, int list)
Definition: h264_slice.c:2163
#define av_freep(p)
enum AVColorTransferCharacteristic color_trc
Definition: frame.h:450
int prev_frame_num_offset
for POC type 2
Definition: h264_parse.h:52
#define av_always_inline
Definition: attributes.h:39
HW decoding through Direct3D11 via old API, Picture.data[3] contains a ID3D11VideoDecoderOutputView p...
Definition: pixfmt.h:243
int slice_beta_offset
Definition: h264dec.h:195
int8_t * intra4x4_pred_mode
Definition: h264dec.h:384
AVBufferRef * av_buffer_pool_get(AVBufferPool *pool)
Allocate a new AVBuffer, reusing an old buffer from the pool when available.
Definition: buffer.c:334
#define ER_AC_END
static int decode_slice(struct AVCodecContext *avctx, void *arg)
Definition: h264_slice.c:2517
int delta_poc[2]
Definition: h264dec.h:329
void ff_h264_direct_dist_scale_factor(const H264Context *const h, H264SliceContext *sl)
Definition: h264_direct.c:62
const char * av_get_pix_fmt_name(enum AVPixelFormat pix_fmt)
Return the short name for a pixel format, NULL in case pix_fmt is unknown.
Definition: pixdesc.c:2335
int ff_h264_slice_context_init(H264Context *h, H264SliceContext *sl)
Init context Allocate buffers which are not shared amongst multiple threads.
Definition: h264dec.c:238
static double cr(void *priv, double x, double y)
Definition: vf_geq.c:107
uint8_t field_scan_q0[16]
Definition: h264dec.h:429
int mb_field_decoding_flag
Definition: h264dec.h:241
uint8_t(* non_zero_count)[48]
Definition: h264dec.h:387
static void loop_filter(const H264Context *h, H264SliceContext *sl, int start_x, int end_x)
Definition: h264_slice.c:2389
unsigned int crop_bottom
frame_cropping_rect_bottom_offset
Definition: h264_ps.h:70
exp golomb vlc stuff
uint8_t * bipred_scratchpad
Definition: h264dec.h:283
void ff_h264_unref_picture(H264Context *h, H264Picture *pic)
Definition: h264_picture.c:46
AVPixelFormat
Pixel format.
Definition: pixfmt.h:60
av_cold void ff_h264qpel_init(H264QpelContext *c, int bit_depth)
Definition: h264qpel.c:49
#define AV_GET_BUFFER_FLAG_REF
The decoder will keep a reference to the frame and may reuse it later.
Definition: avcodec.h:1397
int droppable
Definition: h264dec.h:362
int level_idc
Definition: h264_ps.h:46
int strict_std_compliance
strictly follow the standard (MPEG-4, ...).
Definition: avcodec.h:2981
int crop_right
Definition: h264dec.h:380
void ff_h264_filter_mb_fast(const H264Context *h, H264SliceContext *sl, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize)
int nal_ref_idc
Definition: h264dec.h:441
GetBitContext gb
Definition: h264dec.h:179
uint8_t field_scan[16]
Definition: h264dec.h:423
int cabac_init_idc
Definition: h264dec.h:320
#define FRAME_RECOVERED_IDR
We have seen an IDR, so all the following frames in coded order are correctly decodable.
Definition: h264dec.h:516
for(j=16;j >0;--j)
6: bottom field, top field, bottom field repeated, in that order
Definition: h264_sei.h:50
#define FFMAX3(a, b, c)
Definition: common.h:95
int b_stride
Definition: h264dec.h:400
Predicted.
Definition: avutil.h:275
#define tb
Definition: regdef.h:68
Context Adaptive Binary Arithmetic Coder.
#define H264_MAX_PICTURE_COUNT
Definition: h264dec.h:52
#define AV_CEIL_RSHIFT(a, b)
Definition: common.h:58
void ff_h264_init_cabac_states(const H264Context *h, H264SliceContext *sl)
Definition: h264_cabac.c:1263
int short_ref_count
number of actual short term references
Definition: h264dec.h:478
static uint8_t tmp[11]
Definition: aes_ctr.c:26
enum AVColorSpace colorspace
Definition: h264_ps.h:78